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Abstract: Increasing need of data protection in computer networks led to the development of several cryptographic algorithms 

hence sending data securely over a transmission link is critically important in many applications. Hardware implementation of 

cryptographic algorithms are physically secure than software implementations since outside attackers cannot modify them. In 

order to achieve higher performance in today’s heavily loaded communication networks, hardware implementation is a wise 

choice in terms of better speed and reliability. This paper presents the hardware implementation of Advanced Encryption 

Standard (AES) algorithm using Xilinx–virtex5 Field Programmable Gate Array (FPGA). In order to achieve higher speed and 

lesser area, Sub Byte operation, Inverse Sub Byte operation, Mix Column operation and Inverse Mix Column operations are 

designed as Look Up Tables (LUTs) and Read Only Memories (ROMs). This approach gives a throughput of 3.74Gbps 

utilizing only 1% of total slices in xc5vlx110t-3- ff1136 target device. 
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I. INTRODUCTION 

    Cryptography allows people to carry over the confidence 

found in the physical world to the electronic world. The 

importance of cryptography is constantly increasing since 

the amount of sensitive data being transmitted over an open 

environment is also increasing day by day. The more 

information that is transmitted in computer-readable form, 

the more vulnerable we become to automated spying. 

Cryptography is not only important in defense applications 

but also important in real world applications such as E-

commerce, E-mail etc.Encryption is usually done just before 

sending data. To utilize the channel resources completely 

encryption algorithm must have a speed at least equivalent 

to data transmission speed. Achieving high throughput for 

encryption algorithm for a communication channel of high 

data rate is a challenging task. The hardware (FPGAs and 

Application Specific Integrated Circuits-ASICs) 

implementation of such algorithm which meets these 

requirements is done in the present work. FPGAs are chosen 

considering several advantages over the other counterpart 

[2].The AES was published by National Institute of 

Standards and Technology (NIST) in 2001. Later Rijndael 

algorithm was selected as AES algorithm. Rijndael 

algorithm can have key length of 128, 192 and 256 bits 

while block size must be 128 bit [3]. 

    There are many architecture proposals for AES Rijndael 

algorithm [4, 5], but many of them are poor in terms of area 

and speed. This paper proposes a different approach to 

increase speed by utilizing lesser resources available in 

FPGA. This paper is structured as follows: Section II 

Advanced Encryption Standard and Section III Parallel-Mix 

Columns. Section IV AES Modes of Operation The result 

and conclusion are described in Section V and VI 

respectively. 

II. ADVANCED ENCRYPTION STANDARD 

    AES is a symmetric encryption algorithm, and it takes a 

128-bit data block as input and performs several rounds of 

transformations to generate output cipher text. Each 128-bit 

data block is processed in a 4-by-4 array of bytes, called the 

state. The round key size can be 128, 192 or 256 bits. The 

number of rounds repeated in the AES, Nr, is defined by the 

length of the round key, which is 10, 12 or 14 for key 

lengths of 128, 192 or 256 bits, respectively.Fig.1. Block 

diagram of AES encryption for encryption, there are four 

basic transformations applied as follows:  

A. Sub Bytes 

  The Sub Bytes operation is a nonlinear byte substitution. 

Each byte from the input state is replaced by another byte 

according to the substitution box (called the S-box). The S-

box is computed based on a multiplicative inverse in the 

finite field GF (28) and a bitwise affine transformation.  

 

B. Shift rows 

   In the Shift Rows transformation, the first row of the state 

array remains unchanged. The bytes in the second, third, 

and forth rows are cyclically shifted by one, two, and three 

bytes to the left, respectively.  

 

C. Mix columns 

    During the Mix Columns process, each column of the 

state array is considered as a polynomial over GF (28). After 

multiplying modulo x4+1with a fixed polynomial a(x), 
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given by a(x) = {03} x3+ {01} x2+ {01} x+ {02} the result 

is the corresponding column of the output state.  

 
Fig1. Block diagram of AES encryption. 

D. Addroundkey  

    A round key is added to the state array using a bitwise 

exclusive-or (XOR) operation. Round keys are calculated in 

the key expansion process. If Round keys are calculated on 

the fly for each data block, it is called AES with online key 

expansion. On the other hand, for most applications, the 

encryption keys do not change as frequently as data. As a 

result, round keys can be calculated before the encryption 

process, and kept constant for a period of time in local 

memory or registers. This is called AES with offline key 

expansion. In this paper, both the online and offline key 

expansion AES algorithms are examined. Similarly, there 

are three steps in each key expansion round.  

 

E. Key sub word  

      The Key Sub Word operation takes a four byte input 

word and produces an output word by substituting each byte 

in the input to another byte According to the S-box.  

 

F. Key rot word 

   The function Key Rot Word takes a word [a3; a2; a1; a0], 

performs a cyclic permutation, and returns the word [a2; a1; 

a0; a3] as output.  

 

G. Key xor 
    Every word w[i] is equal to the XOR of the previous 

word, w [i-1], and the word Nk positions earlier, w [i- Nk]. 

Nk equals 4, 6 or 8 for the key lengths of 128, 192 or 256 

bits, respectively. The decryption algorithm applies the 

inverse transformations in the same manner as the 

encipherment. As a result, we only consider the encryption 

algorithm in this work for simplicity, since the 

decipherment yields very similar results.  

III. PARALLEL-MIX COLUMNS 
     Besides loop unrolling, another way to increase the 

through put of the OTOP model is to reduce the main loop’s 

latency in the AES algorithm. In a single loop, the execution 

delay of Mix Columns- 16 results in 60 percent of the total 

latency. Each Mix Columns-16 operates on a four-column 

data block, and the operation on each column is in 

dependent. Therefore, each Mix Columns-16 processor can 

be replaced by four Mix Columns- 4s.Each MixColumns-4 

actor computes only one column rather than a whole data 

block. As a result, the through put of the Parallel-Mix 

Columns implementation is increased to 2,180 cycles per 

block, equaling 136.25 cycles per byte. The data flow 

diagram and mapping of the Parallel-Mix Columns model 

are shown in Figs.2a and 2b. Each core on our targeted 

computational plat form can only support two statically 

configured input ports. Three cores, each called Merge 

Core, are 

Fig.2. data flow diagram and mapping of the Parallel-

Mix Columns model.  

A. parallel-Sub Bytes-Mix Columns  
    In the Parallel-Mix Columns implementation, Sub Bytes- 

16 requires 132 cycles to encrypt one data block, which 

contributes the largest execution delay in one loop. In order 

to increase the throughput further, we parallelize one Sub 

Bytes- 16 in to four SubBytes-4s. In this implementation, 

each SubBytes-4 processes 4 bytes rather than 16 bytes in 

one data block. The effective execution delay of the Sub 

Bytes process is decreased to 40 cycles per block, only 



High Performance Hardware Implementation of AES using Minimal Resources 

International Journal of VLSI System Design and Communication Systems 

Volume.02, IssueNo.11, December-2014, Pages: 1124-1128 

around one fourth as before. Therefore, the throughput of 

the Parallel Sub Bytes- Mix Columns model is increased to 

1,350 cycles per block, equaling 84.375 cycles per byte. The 

mapping graph of the Parallel-Sub Bytes- Mix-Columns 

implementation on as requires 22cores.Instead of 

parallelizing SubBytes-16 in to four SubByte-4s, we can 

replace it with 16 SubBytes-1s. The effective execution 

delay of the Sub Bytes process is reduced to 10cycles. As a 

result, the latency of one-loop decreases to 

120cycles.Therefore, the throughput of the cipher is 

increased to 67.5cycles per byte. However, it requires seven 

additional cores dedicated to communication (four Merge 

Cores and three Dispatch Cores), which impair the area and 

energy efficiency of the implementation.  

 
Fig.3. data flow diagram after loop-un rolling. 

 

B. No-Merge-Parallelism  
    In contrast to the Small model, the No-merge parallelism 

model exploits as much parallelism as possible without 

introducing any cores dedicated to communication, 

including Merge Cores and Dispatch Cores the mapping 

graph of the No merge- parallelism implementation on As 

AP. To speed up the implementation, loop unrolling is 

applied in this model. Each MixColumns-16 is divided in to 

twoMixColumns-8s, which helps reduce the effective delay 

of the Mix Columns process. In order to eliminate additional 

communication processors and simplify the routing, we 

combine the Sub Bytes and the Shift Rows stages in one 

core. This implementation requires 59cores, and has a 

throughput of 152 cycles per block, equaling 9.5 cycles per 

byte. AES cipher can be partitioned into a number of serial 

and parallel independent tasks corresponding to different 

step s in the algorithm. However, the through put of this 

partitioning is low due to the time-consuming loop 

operation in the algorithm. In order to enhance the through 

put, loop-un rolling is applied to break the dependency 

among loops and allow the cipher to operate on multiple 

data blocks simultaneously.  

 

     To improve the through put as much as possible, we un 

roll the loops in both the AES algorithm and the key 

expansion process by Nr 1 times, which equals nine in our 

design. The data flow diagram after loop-un rolling is 

shown in Fig.3. Shows a preliminary AES cipher 

implementation based on the dataflow diagram. Each task in 

the data flow diagram is mapped to one small processor. As 

shown inFig.4, seven small processors are required for one 

loop, four for the AES algorithm and three for the key 

expansion process, respectively. Therefore, the total number 

of processors used in this enciphers is: 

 

 

                              (1)  

   The instruction and data memory sages for each processor 

in the original design, respectively.Eachrocessorinthe70 

core AES cipher uses an average of 28 words fin struction 

memory, which is 22% of all available instruction memory; 

and an average of 55 words of data memory, which is 43% 

of all available data memory  

IV. AES MODES OF OPERATION 

    The AES encryption algorithm accepts one data block 

and the key and produces the encrypted data block. The 

input and output data blocks are of identical size. The 

decryption algorithm accepts one encrypted data block and 

the key to produce the encrypted data block. Several modes 

of operation have been defined to apply the AES block 

cipher to encryption of more than one 128 bit block of data. 

The most commonly used modes with AES are: electronic 

code book (ECB) mode, cipher block chaining (CBC) mode, 

output feedback (OFB) mode, cipher feedback (CFB) mode, 

and counter (CTR) mode. ECB and CTR are known as no 

feedback modes whereas CBC, CFB, and OFB are known 

as feedback modes. In addition, ECB and CBC are referred 

to as block cipher modes as they require the entire data 

block before the start of the encryption, and OFB, CFB, and 

CTR are referred to as stream cipher modes as they operate 

in a stream-like fashion.  

 

A. Output Feedback Mode   

    In the OFB mode the output of the encryption is fed back 

into the input to generate a key generate the cipher data, as 

illustrated in fig 4 SEU propagation during encryption in 

OFB mode. In Fig. 4, if an SEU occurs during encryption in 

the OFB mode then all the subsequent blocks will be 

corrupted starting from the point where the fault has 

occurred. This is because the key stream required for 

encryption and decryption is independent of the plain and 

cipher data and hence the feedback propagates the faults 

from one block to another until the end of the encryption 

process. This is demonstrated by introducing an SEU during 

the encryption of a plain multispectral satellite image. The 

satellite image, the image has 500£500 pixels and each pixel 

is of 24 bits, representing 3 spectral bands with 8 bits per 

band. Thus, the number of 128 bit blocks for this image is 

46875. The fault propagation for a single bit error, which 

was introduced during the encryption of the 20,000th block 

at the Sub Bytes transformation of the 4th byte in the third 

round The propagation of a single bit error that was 

introduced during the encryption of the 40,000th block at 

the Mix Columns transformation of the 7thbyte in the 6th 

round In contrast, if a bit is corrupted during transmission, 
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only a single bit in the plain data is affected and the error 

does not propagate to other parts of the message again for 

the same reason that the key stream does not depend on the 

plain or cipher data. So the transmission fault is not 

propagated. This property is very useful to applications such 

as satellites where the transmission channels are very noisy. 

Hence the OFB mode has an advantage over the CBC and 

CFB modes in that any bit errors that might occur inside 

cipher data are not propagated to affect the decryption of 

subsequent blocks. 

 
Fig.4.Block diagram of OFB mode. 

 

V. SIMULATION RESULTS 

    AES Rijndael algorithm is simulated and synthesized 

using Xilinx 13.1 ISE tool and the targeted FPGA is 

5vlx110tff1136-3 which belongs to Virtex-5 family. The 

design uses only LUTs, ROMs for all the operations of AES 

encryption and decryption. This approach reduces device 

utilization and significantly improves the speed compared to 

other implementation [4, 5, 10]. The key register in the 

decryption module is synthesized as Block-Ram to reduce 

the number of slices used. The utilization summary for 

device 5vlx110tff1136-3 is presented in Table I. 

Table I. SLICE Logic Utilization 

           

     In this proposed design, the encryption unit takes 10 

clock cycles to complete the operation. The maximum path 

delay of the design is 3.420ns resulting in a maximum 

frequency of operation as 292.403MHz. The throughput of 

the proposed encryption module is 3.74Gbps which is given 

by the Equation 1. 

         
                 (1) 

    The proposed work is also compared with the work done 

by Kretzschmar et al. [5] on different AES architectures 

implementation on xilinx virtex-5 FPGA Table II presents 

the comparison result of proposed work with Kretzschmar et 

al. [5] and also with other references.  

Table II. Comparison [5] 

 

 

VI. CONCLUSION 

    AES-128 algorithm for encryption and decryption is 

implemented in Virtex-5 FPGA. With the designing of all 

the operations as LUTs and ROMs, the proposed 

architecture achieves a throughput of 3.74 Gbps and thereby 

utilizing only 1% of slices in the targeted FPGA. Since the 

speed is higher than the already reported systems, hence the 

proposed design serves as the best high speed encryption 

algorithm and is thus suitable for various applications. 

Moreover with less area utilization, the proposed design can 

be embedded with other larger designs as well. 

VII. REFERENCES 

[1] Abhijith.P.S, Mallika Srivastava, Aparna Mishra, 

Manish Goswami, B.R.Singh, “High Performance Hardware 

Implementation of AES Using Minimal Resources”, 2013 

International Conference on Intelligent Systems and Signal 

Processing (ISSP). 

[2] M. Goswami and S. Kannojiya, “High Performance 

FPGA Implementation of AES Algorithm with 128-Bit 

Keys,” Proc. IEEE Int. Conf. Advances Computing Comm., 

vol. 1, Himarpur, India, 2011, pp.  281-286. 

[3] FIPS-197, NIST - National Institute of Standards and 

Technology, “Announcing the Advanced Encryption 

Standard (AES),” 

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 

2001. 

[4] W. Wei, C. Jie and X. Fei, “An Implementation of AES 

Algorithm on FPGA,” IEEE 9th Int. Conf. on Fuzzy 

Systems and Knowledge discover 2012, pp. 1615-1617. 

[5] U. Kretzschmar, A. Astarloa, J. Lazaro, U. Bidarte and J. 

Jimenez, “Robustness analysis of different AES 



High Performance Hardware Implementation of AES using Minimal Resources 

International Journal of VLSI System Design and Communication Systems 

Volume.02, IssueNo.11, December-2014, Pages: 1124-1128 

implementations on SRAM based FPGAs,” Int. Conf. on 

Reconfigurable Computing and FPGAs 2011, pp. 255-260. 

[6] J. Daeme and V. Rijmen, “AES proposal: Rijndael,” 

NIST AES Proposal, June 1998. 

[7]W. Stallings, “Cryptography and network security 

principles and practice,” Pearson edition 2009, pp. 135-160. 

[8]P.V.S. Shastry, A.Agnihotri, D. Kachhwaha, J. Singh and 

M.S. Sutaone, “A Combinational Logic Implementation of 

S-Box of AES,” IEEE 54
th

 Int. Midwest Symp.on Circuits 

and Systems (MWSCAS), Aug. 2011, pp. 1-4. 

[9] S. Kaur and R. Vig, “Efficient Implementation of AES 

Algorithm in FPGA Device,” Int. Conf. on Computational 

Intelligence and Multimedia Applications, Dec. 2007, pp. 

179 – 187. 

[10]H. Trang and N.V. Loi, “An efficient FPGA 

implementation of the Advanced Encryption Standard 

algorithm,” IEEE Int. Conf. on Computing and 

Communication Technologies, Research, Innovation and 

Vision for the Future (RIVF), 2012, pp. 1-4. 

 


