

ISSN 2322-0929

Vol.02, Issue.11,

December-2014,

Pages:1124-1128

 www.ijvdcs.org

Copyright @ 2014 IJVDCS. All rights reserved.

High Performance Hardware Implementation of AES using Minimal Resources
DARAM MALAKONDA

1
, KANDULA RAVI KUMAR

2
, ANANDA BABU BATTU

3

1
PG Scholar, Dept of ECE, Rao & Naidu Engineering College, Ongole, AP, India, Email: darammalakonda@gmail.com.

2
Professor, Dept of ECE, Rao & Naidu Engineering College, Ongole, AP, India, Email: ravi5_kumar@yahoo.com.

3
Assoc Prof, Dept of ECE, Rao & Naidu Engineering College, Ongole, AP, India, Email: anand.rnec@gmail.com.

Abstract: Increasing need of data protection in computer networks led to the development of several cryptographic algorithms

hence sending data securely over a transmission link is critically important in many applications. Hardware implementation of

cryptographic algorithms are physically secure than software implementations since outside attackers cannot modify them. In

order to achieve higher performance in today’s heavily loaded communication networks, hardware implementation is a wise

choice in terms of better speed and reliability. This paper presents the hardware implementation of Advanced Encryption

Standard (AES) algorithm using Xilinx–virtex5 Field Programmable Gate Array (FPGA). In order to achieve higher speed and

lesser area, Sub Byte operation, Inverse Sub Byte operation, Mix Column operation and Inverse Mix Column operations are

designed as Look Up Tables (LUTs) and Read Only Memories (ROMs). This approach gives a throughput of 3.74Gbps

utilizing only 1% of total slices in xc5vlx110t-3- ff1136 target device.

Keywords: AES, Rijndael, Cryptography, FPGA, Verilog, Encryption, Decryption.

I. INTRODUCTION

 Cryptography allows people to carry over the confidence

found in the physical world to the electronic world. The

importance of cryptography is constantly increasing since

the amount of sensitive data being transmitted over an open

environment is also increasing day by day. The more

information that is transmitted in computer-readable form,

the more vulnerable we become to automated spying.

Cryptography is not only important in defense applications

but also important in real world applications such as E-

commerce, E-mail etc.Encryption is usually done just before

sending data. To utilize the channel resources completely

encryption algorithm must have a speed at least equivalent

to data transmission speed. Achieving high throughput for

encryption algorithm for a communication channel of high

data rate is a challenging task. The hardware (FPGAs and

Application Specific Integrated Circuits-ASICs)

implementation of such algorithm which meets these

requirements is done in the present work. FPGAs are chosen

considering several advantages over the other counterpart

[2].The AES was published by National Institute of

Standards and Technology (NIST) in 2001. Later Rijndael

algorithm was selected as AES algorithm. Rijndael

algorithm can have key length of 128, 192 and 256 bits

while block size must be 128 bit [3].

 There are many architecture proposals for AES Rijndael

algorithm [4, 5], but many of them are poor in terms of area

and speed. This paper proposes a different approach to

increase speed by utilizing lesser resources available in

FPGA. This paper is structured as follows: Section II

Advanced Encryption Standard and Section III Parallel-Mix

Columns. Section IV AES Modes of Operation The result

and conclusion are described in Section V and VI

respectively.

II. ADVANCED ENCRYPTION STANDARD

 AES is a symmetric encryption algorithm, and it takes a

128-bit data block as input and performs several rounds of

transformations to generate output cipher text. Each 128-bit

data block is processed in a 4-by-4 array of bytes, called the

state. The round key size can be 128, 192 or 256 bits. The

number of rounds repeated in the AES, Nr, is defined by the

length of the round key, which is 10, 12 or 14 for key

lengths of 128, 192 or 256 bits, respectively.Fig.1. Block

diagram of AES encryption for encryption, there are four

basic transformations applied as follows:

A. Sub Bytes

 The Sub Bytes operation is a nonlinear byte substitution.

Each byte from the input state is replaced by another byte

according to the substitution box (called the S-box). The S-

box is computed based on a multiplicative inverse in the

finite field GF (28) and a bitwise affine transformation.

B. Shift rows

 In the Shift Rows transformation, the first row of the state

array remains unchanged. The bytes in the second, third,

and forth rows are cyclically shifted by one, two, and three

bytes to the left, respectively.

C. Mix columns

 During the Mix Columns process, each column of the

state array is considered as a polynomial over GF (28). After

multiplying modulo x4+1with a fixed polynomial a(x),

DARAM MALAKONDA, KANDULA RAVI KUMAR, ANANDA BABU BATTU

International Journal of VLSI System Design and Communication Systems

Volume.02, IssueNo.11, December-2014, Pages: 1124-1128

given by a(x) = {03} x3+ {01} x2+ {01} x+ {02} the result

is the corresponding column of the output state.

Fig1. Block diagram of AES encryption.

D. Addroundkey

 A round key is added to the state array using a bitwise

exclusive-or (XOR) operation. Round keys are calculated in

the key expansion process. If Round keys are calculated on

the fly for each data block, it is called AES with online key

expansion. On the other hand, for most applications, the

encryption keys do not change as frequently as data. As a

result, round keys can be calculated before the encryption

process, and kept constant for a period of time in local

memory or registers. This is called AES with offline key

expansion. In this paper, both the online and offline key

expansion AES algorithms are examined. Similarly, there

are three steps in each key expansion round.

E. Key sub word

 The Key Sub Word operation takes a four byte input

word and produces an output word by substituting each byte

in the input to another byte According to the S-box.

F. Key rot word

 The function Key Rot Word takes a word [a3; a2; a1; a0],

performs a cyclic permutation, and returns the word [a2; a1;

a0; a3] as output.

G. Key xor
 Every word w[i] is equal to the XOR of the previous

word, w [i-1], and the word Nk positions earlier, w [i- Nk].

Nk equals 4, 6 or 8 for the key lengths of 128, 192 or 256

bits, respectively. The decryption algorithm applies the

inverse transformations in the same manner as the

encipherment. As a result, we only consider the encryption

algorithm in this work for simplicity, since the

decipherment yields very similar results.

III. PARALLEL-MIX COLUMNS
 Besides loop unrolling, another way to increase the

through put of the OTOP model is to reduce the main loop’s

latency in the AES algorithm. In a single loop, the execution

delay of Mix Columns- 16 results in 60 percent of the total

latency. Each Mix Columns-16 operates on a four-column

data block, and the operation on each column is in

dependent. Therefore, each Mix Columns-16 processor can

be replaced by four Mix Columns- 4s.Each MixColumns-4

actor computes only one column rather than a whole data

block. As a result, the through put of the Parallel-Mix

Columns implementation is increased to 2,180 cycles per

block, equaling 136.25 cycles per byte. The data flow

diagram and mapping of the Parallel-Mix Columns model

are shown in Figs.2a and 2b. Each core on our targeted

computational plat form can only support two statically

configured input ports. Three cores, each called Merge

Core, are

Fig.2. data flow diagram and mapping of the Parallel-

Mix Columns model.

A. parallel-Sub Bytes-Mix Columns
 In the Parallel-Mix Columns implementation, Sub Bytes-

16 requires 132 cycles to encrypt one data block, which

contributes the largest execution delay in one loop. In order

to increase the throughput further, we parallelize one Sub

Bytes- 16 in to four SubBytes-4s. In this implementation,

each SubBytes-4 processes 4 bytes rather than 16 bytes in

one data block. The effective execution delay of the Sub

Bytes process is decreased to 40 cycles per block, only

High Performance Hardware Implementation of AES using Minimal Resources

International Journal of VLSI System Design and Communication Systems

Volume.02, IssueNo.11, December-2014, Pages: 1124-1128

around one fourth as before. Therefore, the throughput of

the Parallel Sub Bytes- Mix Columns model is increased to

1,350 cycles per block, equaling 84.375 cycles per byte. The

mapping graph of the Parallel-Sub Bytes- Mix-Columns

implementation on as requires 22cores.Instead of

parallelizing SubBytes-16 in to four SubByte-4s, we can

replace it with 16 SubBytes-1s. The effective execution

delay of the Sub Bytes process is reduced to 10cycles. As a

result, the latency of one-loop decreases to

120cycles.Therefore, the throughput of the cipher is

increased to 67.5cycles per byte. However, it requires seven

additional cores dedicated to communication (four Merge

Cores and three Dispatch Cores), which impair the area and

energy efficiency of the implementation.

Fig.3. data flow diagram after loop-un rolling.

B. No-Merge-Parallelism
 In contrast to the Small model, the No-merge parallelism

model exploits as much parallelism as possible without

introducing any cores dedicated to communication,

including Merge Cores and Dispatch Cores the mapping

graph of the No merge- parallelism implementation on As

AP. To speed up the implementation, loop unrolling is

applied in this model. Each MixColumns-16 is divided in to

twoMixColumns-8s, which helps reduce the effective delay

of the Mix Columns process. In order to eliminate additional

communication processors and simplify the routing, we

combine the Sub Bytes and the Shift Rows stages in one

core. This implementation requires 59cores, and has a

throughput of 152 cycles per block, equaling 9.5 cycles per

byte. AES cipher can be partitioned into a number of serial

and parallel independent tasks corresponding to different

step s in the algorithm. However, the through put of this

partitioning is low due to the time-consuming loop

operation in the algorithm. In order to enhance the through

put, loop-un rolling is applied to break the dependency

among loops and allow the cipher to operate on multiple

data blocks simultaneously.

 To improve the through put as much as possible, we un

roll the loops in both the AES algorithm and the key

expansion process by Nr 1 times, which equals nine in our

design. The data flow diagram after loop-un rolling is

shown in Fig.3. Shows a preliminary AES cipher

implementation based on the dataflow diagram. Each task in

the data flow diagram is mapped to one small processor. As

shown inFig.4, seven small processors are required for one

loop, four for the AES algorithm and three for the key

expansion process, respectively. Therefore, the total number

of processors used in this enciphers is:

 (1)

 The instruction and data memory sages for each processor

in the original design, respectively.Eachrocessorinthe70

core AES cipher uses an average of 28 words fin struction

memory, which is 22% of all available instruction memory;

and an average of 55 words of data memory, which is 43%

of all available data memory

IV. AES MODES OF OPERATION

 The AES encryption algorithm accepts one data block

and the key and produces the encrypted data block. The

input and output data blocks are of identical size. The

decryption algorithm accepts one encrypted data block and

the key to produce the encrypted data block. Several modes

of operation have been defined to apply the AES block

cipher to encryption of more than one 128 bit block of data.

The most commonly used modes with AES are: electronic

code book (ECB) mode, cipher block chaining (CBC) mode,

output feedback (OFB) mode, cipher feedback (CFB) mode,

and counter (CTR) mode. ECB and CTR are known as no

feedback modes whereas CBC, CFB, and OFB are known

as feedback modes. In addition, ECB and CBC are referred

to as block cipher modes as they require the entire data

block before the start of the encryption, and OFB, CFB, and

CTR are referred to as stream cipher modes as they operate

in a stream-like fashion.

A. Output Feedback Mode

 In the OFB mode the output of the encryption is fed back

into the input to generate a key generate the cipher data, as

illustrated in fig 4 SEU propagation during encryption in

OFB mode. In Fig. 4, if an SEU occurs during encryption in

the OFB mode then all the subsequent blocks will be

corrupted starting from the point where the fault has

occurred. This is because the key stream required for

encryption and decryption is independent of the plain and

cipher data and hence the feedback propagates the faults

from one block to another until the end of the encryption

process. This is demonstrated by introducing an SEU during

the encryption of a plain multispectral satellite image. The

satellite image, the image has 500£500 pixels and each pixel

is of 24 bits, representing 3 spectral bands with 8 bits per

band. Thus, the number of 128 bit blocks for this image is

46875. The fault propagation for a single bit error, which

was introduced during the encryption of the 20,000th block

at the Sub Bytes transformation of the 4th byte in the third

round The propagation of a single bit error that was

introduced during the encryption of the 40,000th block at

the Mix Columns transformation of the 7thbyte in the 6th

round In contrast, if a bit is corrupted during transmission,

DARAM MALAKONDA, KANDULA RAVI KUMAR, ANANDA BABU BATTU

International Journal of VLSI System Design and Communication Systems

Volume.02, IssueNo.11, December-2014, Pages: 1124-1128

only a single bit in the plain data is affected and the error

does not propagate to other parts of the message again for

the same reason that the key stream does not depend on the

plain or cipher data. So the transmission fault is not

propagated. This property is very useful to applications such

as satellites where the transmission channels are very noisy.

Hence the OFB mode has an advantage over the CBC and

CFB modes in that any bit errors that might occur inside

cipher data are not propagated to affect the decryption of

subsequent blocks.

Fig.4.Block diagram of OFB mode.

V. SIMULATION RESULTS

 AES Rijndael algorithm is simulated and synthesized

using Xilinx 13.1 ISE tool and the targeted FPGA is

5vlx110tff1136-3 which belongs to Virtex-5 family. The

design uses only LUTs, ROMs for all the operations of AES

encryption and decryption. This approach reduces device

utilization and significantly improves the speed compared to

other implementation [4, 5, 10]. The key register in the

decryption module is synthesized as Block-Ram to reduce

the number of slices used. The utilization summary for

device 5vlx110tff1136-3 is presented in Table I.

Table I. SLICE Logic Utilization

 In this proposed design, the encryption unit takes 10

clock cycles to complete the operation. The maximum path

delay of the design is 3.420ns resulting in a maximum

frequency of operation as 292.403MHz. The throughput of

the proposed encryption module is 3.74Gbps which is given

by the Equation 1.

 (1)

 The proposed work is also compared with the work done

by Kretzschmar et al. [5] on different AES architectures

implementation on xilinx virtex-5 FPGA Table II presents

the comparison result of proposed work with Kretzschmar et

al. [5] and also with other references.

Table II. Comparison [5]

VI. CONCLUSION

 AES-128 algorithm for encryption and decryption is

implemented in Virtex-5 FPGA. With the designing of all

the operations as LUTs and ROMs, the proposed

architecture achieves a throughput of 3.74 Gbps and thereby

utilizing only 1% of slices in the targeted FPGA. Since the

speed is higher than the already reported systems, hence the

proposed design serves as the best high speed encryption

algorithm and is thus suitable for various applications.

Moreover with less area utilization, the proposed design can

be embedded with other larger designs as well.

VII. REFERENCES

[1] Abhijith.P.S, Mallika Srivastava, Aparna Mishra,

Manish Goswami, B.R.Singh, “High Performance Hardware

Implementation of AES Using Minimal Resources”, 2013

International Conference on Intelligent Systems and Signal

Processing (ISSP).

[2] M. Goswami and S. Kannojiya, “High Performance

FPGA Implementation of AES Algorithm with 128-Bit

Keys,” Proc. IEEE Int. Conf. Advances Computing Comm.,

vol. 1, Himarpur, India, 2011, pp. 281-286.

[3] FIPS-197, NIST - National Institute of Standards and

Technology, “Announcing the Advanced Encryption

Standard (AES),”

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf,

2001.

[4] W. Wei, C. Jie and X. Fei, “An Implementation of AES

Algorithm on FPGA,” IEEE 9th Int. Conf. on Fuzzy

Systems and Knowledge discover 2012, pp. 1615-1617.

[5] U. Kretzschmar, A. Astarloa, J. Lazaro, U. Bidarte and J.

Jimenez, “Robustness analysis of different AES

High Performance Hardware Implementation of AES using Minimal Resources

International Journal of VLSI System Design and Communication Systems

Volume.02, IssueNo.11, December-2014, Pages: 1124-1128

implementations on SRAM based FPGAs,” Int. Conf. on

Reconfigurable Computing and FPGAs 2011, pp. 255-260.

[6] J. Daeme and V. Rijmen, “AES proposal: Rijndael,”

NIST AES Proposal, June 1998.

[7]W. Stallings, “Cryptography and network security

principles and practice,” Pearson edition 2009, pp. 135-160.

[8]P.V.S. Shastry, A.Agnihotri, D. Kachhwaha, J. Singh and

M.S. Sutaone, “A Combinational Logic Implementation of

S-Box of AES,” IEEE 54
th

 Int. Midwest Symp.on Circuits

and Systems (MWSCAS), Aug. 2011, pp. 1-4.

[9] S. Kaur and R. Vig, “Efficient Implementation of AES

Algorithm in FPGA Device,” Int. Conf. on Computational

Intelligence and Multimedia Applications, Dec. 2007, pp.

179 – 187.

[10]H. Trang and N.V. Loi, “An efficient FPGA

implementation of the Advanced Encryption Standard

algorithm,” IEEE Int. Conf. on Computing and

Communication Technologies, Research, Innovation and

Vision for the Future (RIVF), 2012, pp. 1-4.

