

ww.semargroups.org

ISSN 2322-0929
Vol.01,Issue.04,
November-2013,
Pages:201-208

www.ijvdcs.org

Copyright @ 2013 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved.

Deadlock Recovery Technique in Bus Enhanced NOC Architecture
BHUKYA YUGANDHAR

1, B. MANASA
2, K. V. VARA PRASAD

3

1PG Scholar, Dept of ECE, Dhruva College of Engineering & Technology, Choutuppal, Nalagonda, AP-INDIA,
E-mail: yugandhar.bhukya@gmail.com.

2Asst Prof, Dept of ECE, Dhruva College of Engineering & Technology, Choutuppal, Nalagonda, AP-INDIA.
3Asst Prof, Dept of ECE, Dhruva College of Engineering & Technology, Choutuppal, Nalagonda, AP-INDIA.

Abstract: Multiprocessor system on chip is emerging as a new trend for System on chip design but the wire and power design
constraints are forcing adoption of new design methodologies. Researchers pursued a scalable solution to this problem i.e.
Network on Chip (NOC). Network on chip architecture better supports the integration of SOC consists of on chip packet
switched network. Thus the idea is borrowed from large scale multiprocessors and wide area network domain and envisions on
chip routers based network. Cores access the network by means of proper interfaces and have their packets forwarded to
destination through multichip routing path. In order to implement a competitive NOC architecture, in this paper we implement a
parallel router which can support five requests simultaneously. Increase in the speed of processors has led to crucial role of
communication in the performance of systems. As a result, routing is taken into consideration as one of the most important
subjects of the Network on Chip architecture. Routing algorithms to deadlock avoidance prevent packets route completely based
on network traffic condition by means of restricting the route of packets. This action leads to less performance especially in
non-uniform traffic patterns. On the other hand True Fully Adoptive Routing algorithm provides routing of packets completely
based on traffic condition. However, deadlock detection and recovery mechanisms are needed to handle deadlocks. Use of
global bus beside NoC as a parallel supportive environment, provide platform to offer advantages of both features of bus and
NoC. Design And Verify the functionality of the “Design and Verification Four Port Router for Network on Chip” IP core
using the latest verification methodologies, Hardware Verification Languages and EDA tools and qualify the IP for Synthesis an
implementation.90% of ASIC respins are due to functional bugs. In order to avoid the delay and meet the TTM, we use the
latest verification methodologies and technologies and accelerate the verification process. The Design and Verification Plan is
based on Verilog Hardware Verification Language. The methodology used for Verification is Constraint random coverage
driven verification .As per our requirement you can develop the 5 ports or n ports.

Keywords: Network on Chip (NOC), Router, Deadlock.

I. INTRODUCTION
A. Router
 A router is a device that forwards data packets across
computer networks. Routers perform the data "traffic
direction" functions on the Internet. A router is a
microprocessor-controlled device that is connected to two
or more data lines from different networks. When a data
packet comes in on one of the lines, the router reads the
address information in the packet to determine its ultimate
destination. Then, using information in its routing table, it
directs the packet to the next network on its journey. A
data packet is typically passed from router to router
through the networks of the Internet until it gets to its
destination computer. Routers also perform other tasks
such as translating the data transmission protocol of the
packet to the appropriate protocol of the next network. The
most familiar type of routers are home and small office
routers that simply pass data, such as web pages and email,
between the home computers and the owner's cable or

DSL modem, which connects to the Internet(ISP).
However more sophisticated routers range from enterprise
routers, which connect large business or ISP networks up
to the powerful core routers that forward data at high
speed along the optical fibre lines of the Internet
backbone. Routers may also be used to connect two or
more logical groups of computer devices known as
subnets, each with a different sub-network address. The
subnets addresses recorded in the router do not necessarily
map directly to the physical interface connections. The
router forwards data packets between incoming and
outgoing interface connections.

B. Applications of Router
 When multiple routers are used in interconnected
networks, the routers exchange information about
destination addresses, using a dynamic routing protocol.
Each router builds up a table listing the preferred routes
between any two systems on the interconnected networks.

BHUKYA YUGANDHAR, B. MANASA, K. V. VARA PRASAD

International Journal of VLSI System Design and Communication Systems
Volume.01, IssueNo.04, November-2013, Pages:201-208

A router has interfaces for different physical types of
network connections, (such as copper cables, fiber optic,
or wireless transmission). It also contains firmware for
different networking protocol standards. Each network
interface uses this specialized computer software to enable
data packets to be forwarded from one protocol
transmission system to another. Routers may also be used
to connect two or more logical groups of computer devices
known as subnets, each with a different sub-network
address. The subnets addresses recorded in the router do
not necessarily map directly to the physical interface
connections. A router has two stages of operation called
planes:

1. Control plan
2. Forwarding plane

1. Control plane
 A router records a routing table listing what route
should be used to forward a data packet, and through
which physical interface connection. It does these using
internal pre-configured addresses, called static routes. A
typical home or small office router showing the ADSL
telephone line and Ethernet network cable connections.

2. Forwarding plane
 The router forwards data packets between incoming
and outgoing interface connections. It routes it to the
correct network type using information that the packet
header contains. It uses data recorded in the routing table
control plane. Routers may provide connectivity within
enterprises, between enterprises and the Internet, and
between internet service providers (ISPs) networks. The
largest routers (such as the Cisco CRS-1 or Juniper T1600)
interconnect the various ISPs, or may be used in large
enterprise networks. Smaller routers usually provide
connectivity for typical home and office networks. Other
networking solutions may be provided by a backbone
Wireless Distribution System (WDS), which avoids the
costs of introducing networking cables into buildings. All
sizes of routers may be found inside enterprises. The most
powerful routers are usually found in ISPs, academic and
research facilities. Large businesses may also need more
powerful routers to cope with ever increasing demands of
intranet data traffic. A three-layer model is in common
use, not all of which need be present in smaller networks.

II. ROUTER CORRECTNESS

 In the context of our scheme, a correctly functioning
router should ensure that a packet’s integrity is maintained
within or across routers. If a router guarantees that no
flits are dropped and all body flits follow the head flit in a
wormhole, then we consider it to be functioning correctly.
Our definition of router’s correctness is motivated by the
fact that even with no guarantees of forward progress, if
each router in the network ensures to hold these properties,
all data in flight in the network is maintained in a coherent
state and correct network state can be restored without any
need of data duplication. In this section we describe our

approach to ensure router correctness using either formal
or runtime verification. Without loss of generality we
discuss our ideas for a fairly complex 3-stage pipelined
router that is input-queued and that uses virtual channel
(VC) flow control, look ahead routing and switch
speculation. A detailed schematic of this router is shown in
Fig. 2. A router essentially ties together its data path
components, such as input buffer, channel and crossbar,
with a control plane that consists of input VC control
(IVC), route computation unit(RC), VC allocator(VA),
switch allocator (SA), output VC control (OVC) and flow
control manager.

Fig.1. High-level overview of ForEVeR. A combination of
router-level runtime monitoring and network-level
detection and recovery scheme, along with component
formal verification, ensures correct NoC operation

 The control plane manages the error free flow of data
from input channels to the output channels via input
buffers and crossbar respectively. Since the data path
components are fairly simple and can be easily verified,
we specifically focus our verification effort on controlling
logic. Moreover, it is well known that the most complex
verification tasks arise from the interaction of concurrent
components. In the framework of a router, the interactions
between the concurrently operating VCs are handled by
RC, VA and SA units. These units utilize information
provided by the flow control mechanism, which is used to
transmit buffer state information among neighboring
routers. Other control units such as IVC and OVC operate
mostly on a standalone basis, with information provided
by the RC, VA and SA units, and hence can be formally
verified using existing formal tools.

 Based on the above observations, first a full formal
proof of router correctness is attempted. If due to the
complexity of the logic involved, formal methods fail to
provide correctness guarantees, only parts of the router
that can be easily handled by existing formal tools are
verified. Then runtime hardware checker are used to
protect the vital router components that handle the
interactions among concurrent units, which keeps the area

Deadlock Recovery Technique in Bus Enhanced NOC Architecture

International Journal of VLSI System Design and Communication Systems
Volume.01, IssueNo.04, November-2013, Pages:201-208

cost low. In addition, provisions have to be made to
prevent the NoC from entering an unrecoverable state; for
example this might happen when a flit is dropped or
corrupted before the monitoring hardware flags an error.
In either case, operation of the router during recovery has
to be formally verified.

A. Formal Verification
 The verification process can be efficiently divided into
two sub- goals: ensuring no flits are dropped and proving
that body flits follow the header flit in a wormhole. To
prove that the router does not drop flits, it is necessary to
verify that all valid flits received through input channels
are written into valid buffer entries, followed by the
verification of first-in first-out functionality of the buffers.
Finally, it should be proven that a flit read from the input
buffer should get to some output channel, within a fixed
number of clock cycles depending on the router pipeline.

Fig.2. Router modifications in ForEVeR. VA, SA and flow
control units are monitored by runtime checkers. To
implement recovery, NoC router is augmented with VC
and speculation disablers along with a token manager and
a recovery FIFO controller

 Verifying that a packet maintains its wormhole nature
is more involved as now correctness has to be proven over
an entire packet rather than a flit. Apart from proving that
flits follow the head flit, formal methods should ensure
that no other flit from any other packet meddles with the
wormhole. Also, it is essential to verify that only valid flits
are transmitted and that there is no flit/packet duplication
within the router. This requires extensive verification of
various router control components and their interactions.
Table 1 summarizes the correctness goals for NoC router
and the entailed properties that require proof. To illustrate
the verification procedure of writing specification
properties, we provide an example where we discuss in

detail how a correctness property is divided into sub-
properties. The property ’incoming valid flits written to IP
buffer’ is used as an example. This property holds if it can
be verified that an incoming valid flit always has a valid
VC tag and the corresponding VC buffer has a free slot
(no overflow). Additionally, the flit contents should be
written to the free slot of only the requested VC buffer.
Finally, an incoming invalid flit should not be written to
any of the VC buffers. Some router implementations
maintain a separate header buffer corresponding to each
VC buffer and thus similar properties should be verified
for the header buffers, where instead of any valid flit, only
valid header flits are considered.

TABLE 1: FORMAL VERIFICATION OF ROUTER
CORRECTNESS

 The number of sub-properties (sub), expressed as
System Verilog Assertions (SVA), to represent each
correctness property is also reported in Table 1. Finally,
Table 1 states the time taken to verify each property
processor running at 2.27 GHz and using 4GB of main
memory. It should be noted that formal guarantees for
starvation freedom in allocation schemes and proper
functioning of the route computation module need not be
provided, as the network level detection and recovery
scheme efficiently handles these scenarios.

B. Runtime Verification
 As mentioned earlier, due to the area overhead of
runtime checkers, only components that handle
interactions between the concurrently operating modules
are monitored. These components are the hardest to verify
and result in majority of hard-to-catch bugs. We also
pointed out that the routing unit, VC allocator and switch
allocator orchestrate the actions of input and output VCs
and that the flow control unit interprets and communicates
the control information between routers. Among these
units, errors in the routing stage are not detrimental to our
scheme as long as the other router functionalities are
guaranteed to be correct. Thus the routing unit is not
monitored at runtime. All other vital units are supervised
for correct operation by runtime checkers, as shown in
Fig.2. Once an error is flagged by these checkers, router
level reconfiguration is performed that forces the router to
a formally verifiable degraded mode, with minimum
functionality to support network level recovery. This is
followed by network level recovery initiation that we
discuss in section B of III chapter.

BHUKYA YUGANDHAR, B. MANASA, K. V. VARA PRASAD

International Journal of VLSI System Design and Communication Systems
Volume.01, IssueNo.04, November-2013, Pages:201-208

1. Detection and Recovery
 VC and switch allocator: A design flaw in VC allocator
may give rise to various erroneous conditions, some of
which are benign as they either do not violate our
definition of router correctness or are effectively detected
and recovered by our network level correctness scheme.
Assignment of an unreserved but erroneous output VC to
an input VC is an example of such a benign error, as in the
worst case it may only lead to misrouting or deadlock.
Starvation is another example that needs no detection or
remedy at a router level. Critical errors arise when an
unreserved output VC is assigned to two input VCs or an
already reserved output VC is assigned to a requesting
input VC. This situation will lead to packet mingling
and/or packet/flit loss. Similar to VC allocator, a design
flaw in switch allocator may or may not have an adverse
affect on For- EVeR’s operation. An error in switch
allocator may send a data flit to a different direction than
the corresponding header flit; it may also cause the same
flit to be sent to multiple outputs; or multiple flits from
different packets to be directed towards the same output at
the same time. All these cases lead to packet data
corruption and an un-recoverable network state. To
monitor VC and switch allocators at runtime for corrupt
behavior, we propose the use of Allocation Comparator
(AC) unit that is a stripped down version of a similar unit
that was proposed for soft error protection. The AC unit is
purely combinational logic that performs all comparisons
within one clock cycle. It simultaneously analyses the state
of VC and switch allocators for duplicate or invalid
assignments. If an error is flagged, all VC and switch
allocations of the previous cycle are invalidated. Flits
traversing the crossbar just after the error is flagged are
discarded at the output. To avoid losing flits due to this
invalidation/discard operation, an extra storage slot per VC
buffer is reserved for use during such emergencies. To
implement this, VA, SA and crossbar units are modified to
accept invalidation command from the AC.

 Flow control: To safeguard against flow control errors,
a hardware monitor is inserted to detect buffer overflow
errors. Additionally, to avoid dropped flits, input buffers
are equipped with two emergency slots per VC. On
receiving a flit at buffer full condition, indicating an
overflow, the downstream router tells the upstream router
to switch to a slightly modified version of ACK-NACK
flow control the second emergency slot is reserved for a
possible in-flight flit during this upstream signaling. The
modified ACKNACK flow control eliminates the need for
negative acknowledgements and re-ordering ability at the
downstream router. This is achieved by stopping further
transmission on the link until an acknowledgement is
received for a previously transmitted flit. The flit awaiting
acknowledgement is re-transmitted every two cycles
(round trip latency of the links), before being dropped on
receiving an acknowledgement. This scheme, though
detrimental for performance, is extremely simple and can
be implemented with little modification to the existing
flow control mechanism. In addition, the router works in
this mode only during recovery, switching back to its high

performance mode after recovery is complete. Note that to
safeguard against all errors at most two emergency slots
per VC buffer are required. Since buffers are usually
designed as circular FIFOs, this scheme entails only slight
modifications to the buffer full logic.

2 Degraded Mode
 When a bug is detected by hardware monitors, the
router switches to a degraded mode with formally verified
execution semantics, by either disabling complex units or
replacing vital ones with simpler spare counterparts. This
mode is equipped with bare-minimum features to support
the network level recovery that is initiated immediately
after discovering a bug. To prevent the NoC routers from
servicing new packets in probable erroneous state, all
packet level operations such as route computation and VC
allocation are disabled during recovery, as discussed in
section B of III chapter. Similarly advance “performance
only” features such as switch speculation and prioritizing
mechanisms are disabled. Since stuck packets have to be
drained out of NoC routers, it still requires the switch
allocator and flow control manager to work properly. To
this end, the router reconfigures to use a spare simple
arbiter that polls each input VC for switch allocation.
Similarly, flow control switches to an acknowledgement
based mode to prevent flit loss as discussed in above sub
section 1. The resulting degraded router has significantly
less concurrency and thus can be verified to function
correctly.

III. NETWORK CORRECTNESS
 With router correctness guaranteed, we need a network
level solution that ensures forward progress in the NoC
system. More specifically it should efficiently detect and
recover from design errors that inhibit forward progress in
the network (deadlock, live lock and starvation) and
misrouting errors. To this end, ForEVeR adds a
lightweight and verifiable checker network that works
concurrently with the original NoC, providing a reliable
fabric for transfer of notifications and recovered packets
during detection and recovery phases respectively. Our
checker network should be a simple, low latency
optimized network that can consistently deliver
notifications before the actual packets arrive through the
primary network. We, therefore, leverage the single cycle
latency, packet-switched routers of, organized as a ring
network.

 In the detection phase, each packet sent on primary
network is accompanied by a corresponding notification
over the checker network, both directed to the same
destination. Each destination maintains a count of
expected future packet deliveries through the primary
network, decrementing the count on receiving a packet
from the primary network. A distributed detection scheme
monitors the counter values for zeros, initiating recovery
on not observing a zero value during the entire check
epoch of certain cycles. During the recovery phase, in-
flight packets are recovered from the primary network, and
reliably transmitted through the checker network. Fig.1

Deadlock Recovery Technique in Bus Enhanced NOC Architecture

International Journal of VLSI System Design and Communication Systems
Volume.01, IssueNo.04, November-2013, Pages:201-208

shows a baseline NoC augmented with the checker
network. Interactions between the NoC router and checker
network are handled by the NI unit, which also houses the
detection and recovery initiation logic.

A. Detection
 All design errors that inhibit forward progress result in
packet(s) jammed within the network, and thus our
detection mechanism should be designed to detect such
scenarios. Moreover, it should be simple enough to be
implemented with small area overhead and minimal
changes to the existing infrastructure. To this end, we use
notification messages travelling via the reliable checker
network as the means for destinations to keep a count of
the future packet deliveries. A bug in the primary network
will always lead to an unaccounted packet at the
destination, and thus the counter value will never go to
zero, under the assumption that notifications always reach
the destination before their counterpart packets. Therefore,
our distributed detection scheme flags an error if it does
not observes a zero counter value at any particular
destination inside an entire check epoch. Fig.3 depicts the
working of our distributed detection scheme. Counting
logic is added to the NI to keep a count of number of
expected packets at destination nodes, as shown in Fig.2.
A timer monitors the counter value for zeros during entire
check epoch length, failing which recovery is triggered.
With proper size of the check epoch, this simple scheme is
effective in catching bugs as we show in our experimental
results and it can be implemented with lightweight
counting logic. On the other hand, misrouting errors that
do not cause deadlock or live lock are detected at
destinations by analyzing the routing information carried
by header flit.

Fig.3. ForEVeR’s detection scheme. Each destination
tracks the notification counters for zero values. Recovery
is triggered if zero is not observed during the entire check
epoch at any destination

B. Recovery
 When an error is reported either by the router level
runtime monitors or by the network level detection

scheme, the NoC enters a unified recovery phase,
consisting of network drain step followed by a packet
recovery step. In network drain phase, the network is
allowed to operate normally to drain its in-flight packets
for a preset amount of time, with the exception of
switching the erroneous routers to a degraded mode if
recovery was initiated by router level checkers. During
this phase, new packets are not injected into the network,
as shown in Fig. 4(a). Recovery is aborted at the end of
network drain if all destinations receive the packets they
were expecting, indicating a false positive due to the
limited accuracy of the detection scheme. It should be
noted that false positives, though a performance hit in
absence of errors, do not affect the correctness of the
system.

Fig.4. ForEVeR recovery process. Network drain is
followed by packet recovery until all primary network
packets are recovered

 The network then enters packet recovery, where we try
to recover packets that are stuck within the network. To
this end, a token is circulated through all routers in the
NoC via the checker network, and NoC routers can operate
only when they hold this token. In addition, VC allocators
of all the NoC routers are disabled to prevent them from

BHUKYA YUGANDHAR, B. MANASA, K. V. VARA PRASAD

International Journal of VLSI System Design and Communication Systems
Volume.01, IssueNo.04, November-2013, Pages:201-208

processing new data packets from neighboring routers.
When a router receives the token, it examines the fronts of
its VC buffers in a serial manner, looking for packet
headers. In case of a successful search, the packet is
retrieved and sent over the checker network as shown in
Fig. 4(b). Since vital router functionalities for packet drain
are still active (even in the degraded mode), the entire
packet can be safely diverted to its destination through the
checker network. Once the token has circulated through all
primary routers, the entire process of packet recovery is
repeated until either each destination receives all the
pending packets or no more packets are retrieved, in which
case a design bug has slipped through our scheme. To
enable the ForEVeR scheme, NoC routers are augmented
with certain simple units, as shown in Fig.2. First, a token
manager is added to the routers to manage token passing.
In addition, virtual channel (VC) allocation disabler (VC-
DIS) and switch speculation disabler (SPEC-DIS) are
included to prevent routers from processing new packets
during the packet recovery phase and to keep the ForEVeR
operation simple and easily verifiable for correctness. The
recovery operation is implemented with very little
overhead, making use of the router’s existing
functionalities to drain out packets from their buffers, with
the help of the FIFO recovery controller.

 Due to the limited bandwidth of the checker network,
each primary network flit is transmitted as several checker
packets. During recovery, only one router is transmitting
its stuck packets to a single destination at a time, greatly
simplifying the disassembling/assembling process. To
send the entire primary network flit as multiple checker
packets, the channel of the checker network is augmented
with head and tail indicators. The flit with head indicator
carries the destination address and reserves an exclusive
path between the source and one particular destination. All
intermediate valid flits traversing the ring network are
ejected at the same destination till a flit is received with a
tail indicator, in which case the process repeats itself on
transmission of another flit with a head indicator.
Moreover, all transmissions on the checker network during
recovery occur in the same (clockwise) direction to avoid
wormhole overlap of two packets. In our evaluation
system with 64 nodes, the checker network channel is 8
bits wide (6-bit address, 2-bit head-tail indicators). Thus
each 64-bit primary network flit takes 12 checker networks
packets (1 head, 11 body/tail) to transfer.

C. Verification of Recovery Operation
 All components involved in the detection and recovery
processes must be formally verified to guarantee correct
functionality. Verification of the detection mechanism
involves ensuring the correct functioning of the counting
and timer logic at NIs and due to the simplicity of the logic
involved this makes up for a trivial verification task.
Formally verifying the recovery operation is more
involved and requires two major tasks: first, verifying the
checker network functionality; and second, verifying the
interaction between checker and primary network during

recovery, to ensure proper restoration of erroneous
packets.

1. Checker network: It should be verified that the checker
network correctly delivers all packets to their respective
destinations within a bounded time. To this end, this
correctness goal was partitioned into three sub-properties:
eventual injection (inj_prop), guaranteeing injection of a
waiting packet into the network; forward progress
(fw_prop) ensuring that packets progress on a path
towards their destination; and timely ejection (ej_prop)
that guarantees packet ejection at correct destination.

2. Interaction with primary network: The primary
network’s units that interact with the checker network to
salvage stuck packets from the primary routers must be
ensured to function properly. During recovery, primary
routers work in a rudimentary mode by disabling all
complex hardware units not involved in the recovery
process, such as the VC allocators and SWspeculators,
thus making the verification task tractable. First, it is
verified that the checker network could extract a complete
packet from an individual primary router’s VC buffer
(rec_prop), leaving it empty (rec_emp_prop). The
complement of this property is also validated
(not_rec_prop) to check that only valid packets are
extracted from the primary network. This was followed by
checking for fairness and exclusivity among the primary
routers while undergoing recovery (fair_ex_prop),
ensuring that packets are salvaged from one router at a
time.

TABLE 2: FORMAL VERIFICATION OF FOREVER’S

RECOVERY OPERATION

 Table 2 summarizes the correctness goals for ForEVeR’s
recovery process and the time required to prove the
detailed properties.

IV. SIMULATION RESULTS
 The work consists of simulation of bus, detection
mechanism and recovery by means of forwarding flits of
deadlocked message on the bus. For evaluation of the
results, we use Noxim simulator. These results are based
on 2-Dimension 4x4 mesh topology. The packets length is
between 4 to 10 flits. It is simulated under non-uniform
traffic loads including First Matrix Transpose, Butterfly
and Bit Reversal. We compare our deadlock recovery
technique - true fully adaptive recovery with bus - with
three International Journal of VLSI design &

Deadlock Recovery Technique in Bus Enhanced NOC Architecture

International Journal of VLSI System Design and Communication Systems
Volume.01, IssueNo.04, November-2013, Pages:201-208

Communication Systems (VLSICS) Vol.3, No.4, August
2012 7 different routing algorithms XY, Minimal West
First and Odd-Even. As shown in figure 4, we compared
average of packets latency and throughput metrics with
increasing packet injection rate. Our proposed deadlock
recovery mechanism with increase packets injection rate
keep the value of latency of packets in lower than other
routing algorithms in First Matrix Transpose traffic
pattern. And with better use of routes between sources and
destinations the average of throughput is increased,
compared to other routing algorithms the average of

Packet Latency and Throughput in First Matrix Transpose
traffic pattern. However in figure 5, we compared the
latency of packets in Butterfly and Bit Reversal traffic
patterns. According to lower amounts of average latency,
our proposed mechanism has provided more increase,
packet injection rate, as compared to other routing
algorithms. (a) Average of Packet Latency in Bit Reversal
traffic pattern. (b) Average of Packet Latency in Butterfly
traffic pattern. Figure 6 depicts the Block Diagram of
FSMTB Simulation Waves.

Fig.5. Block Diagram of FFTB Waveform

Fig.6. Block Diagram of FSMTB Simulation Waves

BHUKYA YUGANDHAR, B. MANASA, K. V. VARA PRASAD

International Journal of VLSI System Design and Communication Systems
Volume.01, IssueNo.04, November-2013, Pages:201-208

V. CONCLUSION
 Increase in the speed of processors has led to important
role of communications in interconnection networks. The
restrictions that deadlock avoidance routing algorithms
apply on the routing of packets prevent the packet to be
routed completely base on network traffic condition. The
True Fully Adaptive Routing algorithm provides packets
routing completely base on traffic condition. A bus
adjacent NoC improve the performance of network and
provides the bus advantage beside NoC. The simulation
results are shown, this bus suitable for deadlock recovery.
International Journal of VLSI design & Communication
Systems (VLSICS) Vol.3, No.4, August 2012 8 According
to deadlock rarely occurrence, when the network is not
close or beyond saturation if flexible routing algorithm is
used, this bus is applicable for broadcast and multicast
operations, system management, delay sensitive signals
and etc. With increase of packet injection rate, the network
tends to saturation. With increase of packet injection rate,
the network tends to saturation. Therefore latency of
packets in reaching to destination will severely increase
with respect to algorithms adaptation and traffic patterns.
Adding virtual channels in each direction in routers can
increase network throughput. Also uses of two virtual
channels per physical channel have been shown to be
enough to reduce probability of deadlock to very small
values. Our future objections are discussion of the effect of
virtual channels on average of throughput and packets
latency in the architecture of network on chip with
enhanced bus.

VI. REFERENCES
[1] J. Duato and S. Halamanchili, Interconnection
Networks and Engineering approach, Morgan Kaufmann
Publishers, 2003. Pinkston and S. Warnakulasuriya, “On
Deadlocks in Interconnection Networks”, Proc. 24th
International symp. Computer Architecture, 1997.

[2] Zhang and L. Hou, “Comparison Research between
XY and Odd-Even Routing Algorithm of a 2- Dimension
3x3 Mesh Topology Network-on-Chip”, Proc. Global
Cong. on Intelligent Systems, pp. 329-333, 2009.

[3] A. de mello and L. Ost et al, “Evaluation of Routing
Algorithms on Mesh Based NoCs”, Technical Report
Series, N. Faculdade De Informatics Pucrs - Brazil, 2004.

[4] M. D. Grammatikakis and P. Mattheakis, “Automated
Recovery from Protocol Deadlock – Test Bench Manual”,
2008.

[5] A. de mello and L. Ost et al, “Evaluation of Routing
Algorithms on Mesh Based NoCs”, Technical Report
Series ,N. 04, Faculdade De Informatica Pucrs - Brazil,
2004. [5] M. D. Grammatikakis and P. Mattheakis,
“Automated Recovery from Protocol Deadlock – Test
Bench Manual”, 2008.

[6] P. Lopez, J. M. Martinez and J. Duato, “A Very
Efficient Distributed Deadlock Detection Mechanism for

Wormhole Networks”, Proc. High Performance Computer
Architecture Workshop, pp. 57-66.

 [7] E. Baydal, P. L´opez and J. Duato, “A Simple and
Efficient Mechanism to Prevent Saturation in Wormhole
Networks”, Proc. Int1 Parallel and Distributed Processing
symp. , pp. 617-622, 2000.

[8] E. Baydal, P. Lopez and J. Duato, “A Congestion
Control Mechanism for Wormhole Networks”, Proc. Ninth
Euromico Workshop on parallel and Distributed
Processing, pp. 19-26, 2001.

[9] Anjan K. V. and T. M. Pinkston, DISHA: “A Deadlock
Recovery Scheme for Fully Adaptive Routing”, Proc. 9th
International Parallel Processing Symp. , pp. 573-543.

[10] J. M. Martinez-Rubio, Pedro Lopez, and Jose Duato,
“A Cost-Effective Approach to Deadlock Handling in
Wormhole Networks”, IEEE Trans. on Parallel and
Distributed Systems, Vol. 12, No. 7, pp.716-729, 2001.

[11] M. Mirza - Aghatabar, A. Tavakol, H. Sarbazi-Azad,
A. Nayebi , An Adaptive Software-based Deadlock
Recovery Technique, Proc. 22nd International Conf. on
Advanced Networking and Applications- workshops, pp.
514-519, 2008.

[12] J. H. Ki, Z. Liu, and A. A. Chien, “Compression less
routing: A framework for adaptive and fault tolerant
routing,” Proc.21st International Symp. On Computer
Architecture, pp. 289–300, 1994.

