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Abstract: Multiprocessor system on chip is emerging as a new trend for System on chip design but the wire and power design 
constraints are forcing adoption of new design methodologies. Researchers pursued a scalable solution to this problem i.e. 
Network on Chip (NOC). Network on chip architecture better supports the integration of SOC consists of on chip packet 
switched network. Thus the idea is borrowed from large scale multiprocessors and wide area network domain and envisions on 
chip routers based network. Cores access the network by means of proper interfaces and have their packets forwarded to 
destination through multichip routing path. In order to implement a competitive NOC architecture, in this paper we implement a 
parallel router which can support five requests simultaneously. Increase in the speed of processors has led to crucial role of 
communication in the performance of systems. As a result, routing is taken into consideration as one of the most important 
subjects of the Network on Chip architecture. Routing algorithms to deadlock avoidance prevent packets route completely based 
on network traffic condition by means of restricting the route of packets. This action leads to less performance especially in 
non-uniform traffic patterns. On the other hand True Fully Adoptive Routing algorithm provides routing of packets completely 
based on traffic condition. However, deadlock detection and recovery mechanisms are needed to handle deadlocks. Use of 
global bus beside NoC as a parallel supportive environment, provide platform to offer advantages of both features of bus and 
NoC. Design And Verify the functionality of the “Design and Verification Four Port Router for Network on Chip”  IP core 
using the latest verification methodologies, Hardware Verification Languages and EDA tools and qualify the IP for Synthesis an 
implementation.90% of ASIC respins are due to functional bugs. In order to avoid the delay and meet the TTM, we use the 
latest verification methodologies and technologies and accelerate the verification process. The Design and Verification Plan is 
based on Verilog Hardware Verification Language. The methodology used for Verification is Constraint random coverage 
driven verification .As per our requirement you can develop the 5 ports or n ports. 

Keywords: Network on Chip (NOC), Router, Deadlock. 

I. INTRODUCTION 
A. Router 
       A router is a device that forwards data packets across 
computer networks. Routers perform the data "traffic 
direction" functions on the Internet. A router is a 
microprocessor-controlled device that is connected to two 
or more data lines from different networks. When a data 
packet comes in on one of the lines, the router reads the 
address information in the packet to determine its ultimate 
destination. Then, using information in its routing table, it 
directs the packet to the next network on its journey. A 
data packet is typically passed from router to router 
through the networks of the Internet until it gets to its 
destination computer. Routers also perform other tasks 
such as translating the data transmission protocol of the 
packet to the appropriate protocol of the next network. The 
most familiar type of routers are home and small office 
routers that simply pass data, such as web pages and email, 
between the home computers and the owner's cable or 

DSL modem, which connects to the Internet(ISP). 
However more sophisticated routers range from enterprise 
routers, which connect large business or ISP networks up 
to the powerful core routers that forward data at high 
speed along the optical fibre lines of the Internet 
backbone. Routers may also be used to connect two or 
more logical groups of computer devices known as 
subnets, each with a different sub-network address. The 
subnets addresses recorded in the router do not necessarily 
map directly to the physical interface connections. The 
router forwards data packets between incoming and 
outgoing interface connections. 

B. Applications of Router 
     When multiple routers are used in interconnected 
networks, the routers exchange information about 
destination addresses, using a dynamic routing protocol. 
Each router builds up a table listing the preferred routes 
between any two systems on the interconnected networks. 
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A router has interfaces for different physical types of 
network connections, (such as copper cables, fiber optic, 
or wireless transmission). It also contains firmware for 
different networking protocol standards. Each network 
interface uses this specialized computer software to enable 
data packets to be forwarded from one protocol 
transmission system to another. Routers may also be used 
to connect two or more logical groups of computer devices 
known as subnets, each with a different sub-network 
address. The subnets addresses recorded in the router do 
not necessarily map directly to the physical interface 
connections. A router has two stages of operation called 
planes: 

1. Control plan 
2. Forwarding plane 

 
1. Control plane 
     A router records a routing table listing what route 
should be used to forward a data packet, and through 
which physical interface connection. It does these using 
internal pre-configured addresses, called static routes. A 
typical home or small office router showing the ADSL 
telephone line and Ethernet network cable connections. 
 
2. Forwarding plane 
      The router forwards data packets between incoming 
and outgoing interface connections. It routes it to the 
correct network type using information that the packet 
header contains. It uses data recorded in the routing table 
control plane. Routers may provide connectivity within 
enterprises, between enterprises and the Internet, and 
between internet service providers (ISPs) networks. The 
largest routers (such as the Cisco CRS-1 or Juniper T1600) 
interconnect the various ISPs, or may be used in large 
enterprise networks. Smaller routers usually provide 
connectivity for typical home and office networks. Other 
networking solutions may be provided by a backbone 
Wireless Distribution System (WDS), which avoids the 
costs of introducing networking cables into buildings. All 
sizes of routers may be found inside enterprises. The most 
powerful routers are usually found in ISPs, academic and 
research facilities. Large businesses may also need more 
powerful routers to cope with ever increasing demands of 
intranet data traffic. A three-layer model is in common 
use, not all of which need be present in smaller networks. 
 

II. ROUTER CORRECTNESS 

     In the context of our scheme, a correctly functioning 
router should ensure that a packet’s integrity is maintained 
within or across routers.   If a router guarantees that no 
flits are dropped and all body flits follow the head flit in a 
wormhole, then we consider it to be functioning correctly. 
Our definition of router’s correctness is motivated by the 
fact that even with no guarantees of forward progress, if 
each router in the network ensures to hold these properties, 
all data in flight in the network is maintained in a coherent 
state and correct network state can be restored without any 
need of data duplication. In this section we describe our 

approach to ensure router correctness using either formal 
or runtime verification. Without loss of generality we 
discuss our ideas for a fairly complex 3-stage pipelined 
router that is input-queued and that uses virtual channel 
(VC) flow control, look ahead routing and switch 
speculation. A detailed schematic of this router is shown in 
Fig. 2. A router essentially ties together its data path 
components, such as input buffer, channel and crossbar, 
with a control plane that consists of input VC control 
(IVC), route computation unit(RC), VC allocator(VA), 
switch allocator (SA), output VC control (OVC) and flow 
control manager. 

 
Fig.1. High-level overview of ForEVeR. A combination of 
router-level runtime monitoring and network-level 
detection and recovery scheme, along with component 
formal verification, ensures correct NoC operation 

     The control plane manages the error free flow of data 
from input channels to the output channels via input 
buffers and crossbar respectively. Since the data path 
components are fairly simple and can be easily verified, 
we specifically focus our verification effort on controlling 
logic. Moreover, it is well known that the most complex 
verification tasks arise from the interaction of concurrent 
components. In the framework of a router, the interactions 
between the concurrently operating VCs are handled by 
RC, VA and SA units. These units utilize information 
provided by the flow control mechanism, which is used to 
transmit buffer state information among neighboring 
routers. Other control units such as IVC and OVC operate 
mostly on a standalone basis, with information provided 
by the RC, VA and SA units, and hence can be formally 
verified using existing formal tools. 

     Based on the above observations, first a full formal 
proof of router correctness is attempted. If due to the 
complexity of the logic involved, formal methods fail to 
provide correctness guarantees, only parts of the router 
that can be easily handled by existing formal tools are 
verified. Then runtime hardware checker are used to 
protect the vital router components that handle the 
interactions among concurrent units, which keeps the area 
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cost low. In addition, provisions have to be made to 
prevent the NoC from entering an unrecoverable state; for 
example this might happen when a flit is dropped or 
corrupted before the monitoring hardware flags an error. 
In either case, operation of the router during recovery has 
to be formally verified. 

A. Formal Verification 
    The verification process can be efficiently divided into 
two sub- goals: ensuring no flits are dropped and proving 
that body flits follow the header flit in a wormhole. To 
prove that the router does not drop flits, it is necessary to 
verify that all valid flits received through input channels 
are written into valid buffer entries, followed by the 
verification of first-in first-out functionality of the buffers. 
Finally, it should be proven that a flit read from the input 
buffer should get to some output channel, within a fixed 
number of clock cycles depending on the router pipeline. 

 
Fig.2. Router modifications in ForEVeR. VA, SA and flow 
control units are monitored by runtime checkers. To 
implement recovery, NoC router is augmented with VC 
and speculation disablers along with a token manager and 
a recovery FIFO controller 

     Verifying that a packet maintains its wormhole nature 
is more involved as now correctness has to be proven over 
an entire packet rather than a flit. Apart from proving that 
flits follow the head flit, formal methods should ensure 
that no other flit from any other packet meddles with the 
wormhole. Also, it is essential to verify that only valid flits 
are transmitted and that there is no flit/packet duplication 
within the router. This requires extensive verification of 
various router control components and their interactions. 
Table 1 summarizes the correctness goals for NoC router 
and the entailed properties that require proof. To illustrate 
the verification procedure of writing specification 
properties, we provide an example where we discuss in 

detail how a correctness property is divided into sub-
properties. The property ’incoming valid flits written to IP 
buffer’ is used as an example. This property holds if it can 
be verified that an incoming valid flit always has a valid 
VC tag and the corresponding VC buffer has a free slot 
(no overflow). Additionally, the flit contents should be 
written to the free slot of only the requested VC buffer. 
Finally, an incoming invalid flit should not be written to 
any of the VC buffers. Some router implementations 
maintain a separate header buffer corresponding to each 
VC buffer and thus similar properties should be verified 
for the header buffers, where instead of any valid flit, only 
valid header flits are considered. 

TABLE 1: FORMAL VERIFICATION OF ROUTER 
CORRECTNESS 

 

     The number of sub-properties (sub), expressed as 
System Verilog Assertions (SVA), to represent each 
correctness property is also reported in Table 1. Finally, 
Table 1 states the time taken to verify each property 
processor running at 2.27 GHz and using 4GB of main 
memory. It should be noted that formal guarantees for 
starvation freedom in allocation schemes and proper 
functioning of the route computation module need not be 
provided, as the network level detection and recovery 
scheme efficiently handles these scenarios. 

B. Runtime Verification 
     As mentioned earlier, due to the area overhead of 
runtime checkers, only components that handle 
interactions between the concurrently operating modules 
are monitored. These components are the hardest to verify 
and result in majority of hard-to-catch bugs. We also 
pointed out that the routing unit, VC allocator and switch 
allocator orchestrate the actions of input and output VCs 
and that the flow control unit interprets and communicates 
the control information between routers. Among these 
units, errors in the routing stage are not detrimental to our 
scheme as long as the other router functionalities are 
guaranteed to be correct. Thus the routing unit is not 
monitored at runtime. All other vital units are supervised 
for correct operation by runtime checkers, as shown in 
Fig.2. Once an error is flagged by these checkers, router 
level reconfiguration is performed that forces the router to 
a formally verifiable degraded mode, with minimum 
functionality to support network level recovery. This is 
followed by network level recovery initiation that we 
discuss in section B of III chapter.  
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1. Detection and Recovery 
     VC and switch allocator: A design flaw in VC allocator 
may give rise to various erroneous conditions, some of 
which are benign as they either do not violate our 
definition of router correctness or are effectively detected 
and recovered by our network level correctness scheme. 
Assignment of an unreserved but erroneous output VC to 
an input VC is an example of such a benign error, as in the 
worst case it may only lead to misrouting or deadlock. 
Starvation is another example that needs no detection or 
remedy at a router level. Critical errors arise when an 
unreserved output VC is assigned to two input VCs or an 
already reserved output VC is assigned to a requesting 
input VC. This situation will lead to packet mingling 
and/or packet/flit loss. Similar to VC allocator, a design 
flaw in switch allocator may or may not have an adverse 
affect on For- EVeR’s operation. An error in switch 
allocator may send a data flit to a different direction than 
the corresponding header flit; it may also cause the same 
flit to be sent to multiple outputs; or multiple flits from 
different packets to be directed towards the same output at 
the same time. All these cases lead to packet data 
corruption and an un-recoverable network state. To 
monitor VC and switch allocators at runtime for corrupt 
behavior, we propose the use of Allocation Comparator 
(AC) unit that is a stripped down version of a similar unit 
that was proposed for soft error protection. The AC unit is 
purely combinational logic that performs all comparisons 
within one clock cycle. It simultaneously analyses the state 
of VC and switch allocators for duplicate or invalid 
assignments. If an error is flagged, all VC and switch 
allocations of the previous cycle are invalidated. Flits 
traversing the crossbar just after the error is flagged are 
discarded at the output. To avoid losing flits due to this 
invalidation/discard operation, an extra storage slot per VC 
buffer is reserved for use during such emergencies. To 
implement this, VA, SA and crossbar units are modified to 
accept invalidation command from the AC. 

     Flow control: To safeguard against flow control errors, 
a hardware monitor is inserted to detect buffer overflow 
errors. Additionally, to avoid dropped flits, input buffers 
are equipped with two emergency slots per VC. On 
receiving a flit at buffer full condition, indicating an 
overflow, the downstream router tells the upstream router 
to switch to a slightly modified version of ACK-NACK 
flow control the second emergency slot is reserved for a 
possible in-flight flit during this upstream signaling. The 
modified ACKNACK flow control eliminates the need for 
negative acknowledgements and re-ordering ability at the 
downstream router. This is achieved by stopping further 
transmission on the link until an acknowledgement is 
received for a previously transmitted flit. The flit awaiting 
acknowledgement is re-transmitted every two cycles 
(round trip latency of the links), before being dropped on 
receiving an acknowledgement. This scheme, though 
detrimental for performance, is extremely simple and can 
be implemented with little modification to the existing 
flow control mechanism. In addition, the router works in 
this mode only during recovery, switching back to its high 

performance mode after recovery is complete. Note that to 
safeguard against all errors at most two emergency slots 
per VC buffer are required. Since buffers are usually 
designed as circular FIFOs, this scheme entails only slight 
modifications to the buffer full logic. 

2 Degraded Mode 
     When a bug is detected by hardware monitors, the 
router switches to a degraded mode with formally verified 
execution semantics, by either disabling complex units or 
replacing vital ones with simpler spare counterparts. This 
mode is equipped with bare-minimum features to support 
the network level recovery that is initiated immediately 
after discovering a bug. To prevent the NoC routers from 
servicing new packets in probable erroneous state, all 
packet level operations such as route computation and VC 
allocation are disabled during recovery, as discussed in 
section B of III chapter. Similarly advance “performance 
only” features such as switch speculation and prioritizing 
mechanisms are disabled. Since stuck packets have to be 
drained out of NoC routers, it still requires the switch 
allocator and flow control manager to work properly. To 
this end, the router reconfigures to use a spare simple 
arbiter that polls each input VC for switch allocation. 
Similarly, flow control switches to an acknowledgement 
based mode to prevent flit loss as discussed in above sub 
section 1. The resulting degraded router has significantly 
less concurrency and thus can be verified to function 
correctly. 

III. NETWORK CORRECTNESS 
     With router correctness guaranteed, we need a network 
level solution that ensures forward progress in the NoC 
system. More specifically it should efficiently detect and 
recover from design errors that inhibit forward progress in 
the network (deadlock, live lock and starvation) and 
misrouting errors. To this end, ForEVeR adds a 
lightweight and verifiable checker network that works 
concurrently with the original NoC, providing a reliable 
fabric for transfer of notifications and recovered packets 
during detection and recovery phases respectively. Our 
checker network should be a simple, low latency 
optimized network that can consistently deliver 
notifications before the actual packets arrive through the 
primary network. We, therefore, leverage the single cycle 
latency, packet-switched routers of, organized as a ring 
network. 

    In the detection phase, each packet sent on primary 
network is accompanied by a corresponding notification 
over the checker network, both directed to the same 
destination. Each destination maintains a count of 
expected future packet deliveries through the primary 
network, decrementing the count on receiving a packet 
from the primary network. A distributed detection scheme 
monitors the counter values for zeros, initiating recovery 
on not observing a zero value during the entire check 
epoch of certain cycles. During the recovery phase, in-
flight packets are recovered from the primary network, and 
reliably transmitted through the checker network. Fig.1 
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shows a baseline NoC augmented with the checker 
network. Interactions between the NoC router and checker 
network are handled by the NI unit, which also houses the 
detection and recovery initiation logic. 

A. Detection 
    All design errors that inhibit forward progress result in 
packet(s) jammed within the network, and thus our 
detection mechanism should be designed to detect such 
scenarios. Moreover, it should be simple enough to be 
implemented with small area overhead and minimal 
changes to the existing infrastructure. To this end, we use 
notification messages travelling via the reliable checker 
network as the means for destinations to keep a count of 
the future packet deliveries. A bug in the primary network 
will always lead to an unaccounted packet at the 
destination, and thus the counter value will never go to 
zero, under the assumption that notifications always reach 
the destination before their counterpart packets. Therefore, 
our distributed detection scheme flags an error if it does 
not observes a zero counter value at any particular 
destination inside an entire check epoch. Fig.3 depicts the 
working of our distributed detection scheme. Counting 
logic is added to the NI to keep a count of number of 
expected packets at destination nodes, as shown in Fig.2. 
A timer monitors the counter value for zeros during entire 
check epoch length, failing which recovery is triggered. 
With proper size of the check epoch, this simple scheme is 
effective in catching bugs as we show in our experimental 
results and it can be implemented with lightweight 
counting logic. On the other hand, misrouting errors that 
do not cause deadlock or live lock are detected at 
destinations by analyzing the routing information carried 
by header flit. 

 
Fig.3. ForEVeR’s detection scheme. Each destination 
tracks the notification counters for zero values. Recovery 
is triggered if zero is not observed during the entire check 
epoch at any destination 

B. Recovery 
     When an error is reported either by the router level 
runtime monitors or by the network level detection 

scheme, the NoC enters a unified recovery phase, 
consisting of network drain step followed by a packet 
recovery step. In network drain phase, the network is 
allowed to operate normally to drain its in-flight packets 
for a preset amount of time, with the exception of 
switching the erroneous routers to a degraded mode if 
recovery was initiated by router level checkers. During 
this phase, new packets are not injected into the network, 
as shown in Fig. 4(a). Recovery is aborted at the end of 
network drain if all destinations receive the packets they 
were expecting, indicating a false positive due to the 
limited accuracy of the detection scheme. It should be 
noted that false positives, though a performance hit in 
absence of errors, do not affect the correctness of the 
system. 

 
Fig.4. ForEVeR recovery process. Network drain is 
followed by packet recovery until all primary network 
packets are recovered 

     The network then enters packet recovery, where we try 
to recover packets that are stuck within the network. To 
this end, a token is circulated through all routers in the 
NoC via the checker network, and NoC routers can operate 
only when they hold this token. In addition, VC allocators 
of all the NoC routers are disabled to prevent them from 
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processing new data packets from neighboring routers. 
When a router receives the token, it examines the fronts of 
its VC buffers in a serial manner, looking for packet 
headers. In case of a successful search, the packet is 
retrieved and sent over the checker network as shown in 
Fig. 4(b). Since vital router functionalities for packet drain 
are still active (even in the degraded mode), the entire 
packet can be safely diverted to its destination through the 
checker network. Once the token has circulated through all 
primary routers, the entire process of packet recovery is 
repeated until either each destination receives all the 
pending packets or no more packets are retrieved, in which 
case a design bug has slipped through our scheme. To 
enable the ForEVeR scheme, NoC routers are augmented 
with certain simple units, as shown in Fig.2. First, a token 
manager is added to the routers to manage token passing. 
In addition, virtual channel (VC) allocation disabler (VC-
DIS) and switch speculation disabler (SPEC-DIS) are 
included to prevent routers from processing new packets 
during the packet recovery phase and to keep the ForEVeR 
operation simple and easily verifiable for correctness. The 
recovery operation is implemented with very little 
overhead, making use of the router’s existing 
functionalities to drain out packets from their buffers, with 
the help of the FIFO recovery controller. 

     Due to the limited bandwidth of the checker network, 
each primary network flit is transmitted as several checker 
packets. During recovery, only one router is transmitting 
its stuck packets to a single destination at a time, greatly 
simplifying the disassembling/assembling process. To 
send the entire primary network flit as multiple checker 
packets, the channel of the checker network is augmented 
with head and tail indicators. The flit with head indicator 
carries the destination address and reserves an exclusive 
path between the source and one particular destination. All 
intermediate valid flits traversing the ring network are 
ejected at the same destination till a flit is received with a 
tail indicator, in which case the process repeats itself on 
transmission of another flit with a head indicator. 
Moreover, all transmissions on the checker network during 
recovery occur in the same (clockwise) direction to avoid 
wormhole overlap of two packets. In our evaluation 
system with 64 nodes, the checker network channel is 8 
bits wide (6-bit address, 2-bit head-tail indicators). Thus 
each 64-bit primary network flit takes 12 checker networks 
packets (1 head, 11 body/tail) to transfer. 

C. Verification of Recovery Operation 
     All components involved in the detection and recovery 
processes must be formally verified to guarantee correct 
functionality. Verification of the detection mechanism 
involves ensuring the correct functioning of the counting 
and timer logic at NIs and due to the simplicity of the logic 
involved this makes up for a trivial verification task. 
Formally verifying the recovery operation is more 
involved and requires two major tasks: first, verifying the 
checker network functionality; and second, verifying the 
interaction between checker and primary network during 

recovery, to ensure proper restoration of erroneous 
packets. 

1. Checker network: It should be verified that the checker 
network correctly delivers all packets to their respective 
destinations within a bounded time. To this end, this 
correctness goal was partitioned into three sub-properties: 
eventual injection (inj_prop), guaranteeing injection of a 
waiting packet into the network; forward progress 
(fw_prop) ensuring that packets progress on a path 
towards their destination; and timely ejection (ej_prop) 
that guarantees packet ejection at correct destination. 

2. Interaction with primary network: The primary 
network’s units that interact with the checker network to 
salvage stuck packets from the primary routers must be 
ensured to function properly. During recovery, primary 
routers work in a rudimentary mode by disabling all 
complex hardware units not involved in the recovery 
process, such as the VC allocators and SWspeculators, 
thus making the verification task tractable. First, it is 
verified that the checker network could extract a complete 
packet from an individual primary router’s VC buffer 
(rec_prop), leaving it empty (rec_emp_prop). The 
complement of this property is also validated 
(not_rec_prop) to check that only valid packets are 
extracted from the primary network. This was followed by 
checking for fairness and exclusivity among the primary 
routers while undergoing recovery (fair_ex_prop), 
ensuring that packets are salvaged from one router at a 
time. 
 
TABLE 2: FORMAL VERIFICATION OF FOREVER’S 

RECOVERY OPERATION 

 

   Table 2 summarizes the correctness goals for ForEVeR’s 
recovery process and the time required to prove the 
detailed properties. 

IV. SIMULATION RESULTS 
    The work consists of simulation of bus, detection 
mechanism and recovery by means of forwarding flits of 
deadlocked message on the bus. For evaluation of the 
results, we use Noxim simulator. These results are based 
on 2-Dimension 4x4 mesh topology. The packets length is 
between 4 to 10 flits. It is simulated under non-uniform 
traffic loads including First Matrix Transpose, Butterfly 
and Bit Reversal. We compare our deadlock recovery 
technique - true fully adaptive recovery with bus - with 
three International Journal of VLSI design & 
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Communication Systems (VLSICS) Vol.3, No.4, August 
2012 7 different routing algorithms XY, Minimal West 
First and Odd-Even. As shown in figure 4, we compared 
average of packets latency and throughput metrics with 
increasing packet injection rate. Our proposed deadlock 
recovery mechanism with increase packets injection rate 
keep the value of latency of packets in lower than other 
routing algorithms in First Matrix Transpose traffic 
pattern. And with better use of routes between sources and 
destinations the average of throughput is increased, 
compared to other routing algorithms the average of 

Packet Latency and Throughput in First Matrix Transpose 
traffic pattern. However in figure 5, we compared the 
latency of packets in Butterfly and Bit Reversal traffic 
patterns. According to lower amounts of average latency, 
our proposed mechanism has provided more increase, 
packet injection rate, as compared to other routing 
algorithms. (a) Average of Packet Latency in Bit Reversal 
traffic pattern. (b) Average of Packet Latency in Butterfly 
traffic pattern. Figure 6 depicts the Block Diagram of 
FSMTB Simulation Waves. 

 
Fig.5. Block Diagram of FFTB Waveform 

 
Fig.6. Block Diagram of FSMTB Simulation Waves 
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V. CONCLUSION  
     Increase in the speed of processors has led to important 
role of communications in interconnection networks. The 
restrictions that deadlock avoidance routing algorithms 
apply on the routing of packets prevent the packet to be 
routed completely base on network traffic condition. The 
True Fully Adaptive Routing algorithm provides packets 
routing completely base on traffic condition. A bus 
adjacent NoC improve the performance of network and 
provides the bus advantage beside NoC. The simulation 
results are shown, this bus suitable for deadlock recovery. 
International Journal of VLSI design & Communication 
Systems (VLSICS) Vol.3, No.4, August 2012 8 According 
to deadlock rarely occurrence, when the network is not 
close or beyond saturation if flexible routing algorithm is 
used, this bus is applicable for broadcast and multicast 
operations, system management, delay sensitive signals 
and etc. With increase of packet injection rate, the network 
tends to saturation. With increase of packet injection rate, 
the network tends to saturation. Therefore latency of 
packets in reaching to destination will severely increase 
with respect to algorithms adaptation and traffic patterns. 
Adding virtual channels in each direction in routers can 
increase network throughput. Also uses of two virtual 
channels per physical channel have been shown to be 
enough to reduce probability of deadlock to very small 
values. Our future objections are discussion of the effect of 
virtual channels on average of throughput and packets 
latency in the architecture of network on chip with 
enhanced bus. 
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