

ISSN 2322-0929

Vol.04, Issue.10,

October-2016,

Pages:0994-0998

 www.ijvdcs.org

Copyright @ 2016 IJVDCS. All rights reserved.

Design and Verification of APB to SPI Interface
D. ANJALI

1
, A. RADHIKA

2

1
PG Scholar, Dept of VLSI System Design, Anurag College of Engineering, Aushapur, Ghatkesar, TS, India.

2
Associate Professor, Dept of ECE, Anurag College of Engineering, Aushapur, Ghatkesar, TS, India.

Abstract: For effective functioning of the system these modules need to be in sync with each other and share resources. Problem

starts when one module follows different protocol as others and each module has its different bit rate or baud rate of data transfer

which can be either asynchronous or synchronous. The paper takes an example of I2C protocol and AMBA APB protocol to describe

the architecture which defines show data are transferred from one protocol to another. It exploits the flexible protocols of I2C to

make it compatible with APB protocol. The proposed architecture is a bridge between I2CMaster and APB Salve. The data travels

from a serial bus (I2C) to parallel bus (APB) to serial (I2C) in sync with the respective domain clock. This forms a bidirectional

interface between I2Csupported module and APB supported module. It has the disadvantages of interface diagram complexity is

more and requires more pins. to overcome this problem we can design this project. In this project we design an APB slave which acts

as an SPI master and interacts with an off chip SPI slave through the SPI bus. Our design acts as in interface between the peripheral

bus of the SOC (APB) and SPI which is one of the popular serial protocols for communication between ICs.

Keywords: AMBA APB, SPI Interface, SPI Controller.

I. INTRODUCTION

 The Advanced Peripheral Bus (APB) is part of the Advanced

Microcontroller Bus Architecture (AMBA) hierarchy of buses

and is optimized for minimal power consumption and reduced

interface complexity. The AMBA APB should be used to

interface to any peripherals which are low band width and do

not require the high performance of a pipelined bus interface.

The latest revision of the APB ensures that all signal transitions

are only related to the rising edge of the clock. This

improvement means the APB peripherals can be integrated

easily into any design flow, with the following advantages:

 Performance is improved at high-frequency operation

 Performance is independent of the mark-space ratio of

the clock

 Static timing analysis is simplified by the use of a

single clock edge

 No special considerations are required for automatic

test insertion

 •Many Application-Specific Integrated Circuit (ASIC)

libraries have a better Selection of rising edge registers

 Easy integration with cycle based simulators.

 These changes to the APB also make it simpler to interface

it to the new Advanced High-performance Bus(AHB). An

AMBA-based microcontroller typically consists of a high-

performance system Back bone bus, able to sustain the external

memory bandwidth, on which the CPU and Other Direct

Memory Access (DMA) devices reside, plus a bridge to a

narrower APB Bus on which the lower bandwidth peripheral

devices are located. Fig.1 shows the APB in a typical AMBA

system.

Fig.1 APB in a typical AMBA system.

Fig. 2. APB slave block diagram.

 The APB only supports single-word 32-bit accesses. Bits

[1:0] of the PADDR signal are not used within the memory

controller, resulting in byte and half-word accesses being treated

as word accesses. The APB interface enables the memory

D. ANJALI, A. RADHIKA

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.10, October-2016, Pages: 0994-0998

controller state of operation in addition to programming the

memory controller with the correct timings and settings for the

connected memory type. The APB interface also initializes the

connected memory devices see Initialization .The APB interface

is clocked by the same clock as the AXI domain clock, ack.

However, the interface has also a clock enable, enabling it to be

slowed down to execute at an integer divisor of ack.

The PSLVERR output is included for completeness, and the

DMC permanently drives it low. To enable a clean registered

interface to the external infrastructure, the APB interface always

adds a wait state for all reads and writes by

driving PREADY low. In the following instances, a delay of

more than one wait state can be generated:

 when a direct command is received and there are

outstanding commands that prevent a new command

being stored in the command FIFO

 When a memory command is received, and a previous

memory command has not been completed.

 Fig.2 shows the APB slave block diagram. it consists the

PCLK, PRESET, PADDR, PENABLE, PSEL and REGRDATA

as inputs and PEREADY, PSLAVERR and PRDATA as

outputs.

Fig. 3 state diagram for APB slave.

 Fig .3 shows the state diagram for the APB slave.IDLE is

the normal state of the APB. When a transfer is necessary the

bus relocates into the SETUP state, where the suitable select

signal, PSEL is asserted .The bus only waits in the SETUP state

for one clock cycle and always moves to the ACCESS state on

the next rising edge of the clock. ACCESS will enable signal,

PENABLE, is asserted in the ACCESS state. The write, write

data signals, select, and address must remain stable during the

transition from the SETUP to ACCESS state. ACCESS state is

controls when to exit by the PWRITE signal from the slave.

These are the conditions one is if PWRITE is selected their

three commands are performed, one is if paddr=2”b00 then it

goes for command FIFO and paddr=2’b01then slave performed

write operation. If paddr=2’b10 then slave performed read

operation another is PWRITE is not selected o by the slave then

the ACCESS state is exited and the bus returns to the IDLE

state if no more transfers are required after that it will start the

same cycle.

II. SPI PROTOCOL

 The SPI is a synchronous serial interface in which data in an

8-bit byte can be shifted in and/or out one bit at a time. It can be

used to communicate with a serial peripheral device or with

another microcontroller with an SPI interface. The SPI system

contains the four signals as shown in Fig. 4. In the master SPI,

the bits are sent out of the MOSI pin and received in the MISO

pin. The bits to be shifted out are stored in the SPI data register,

and are sent out most significant bit (bit 7) first. When bit 7 of

the master is shifted out through MOSI pin, a bit from bit 7 of

the slave is being shifted into bit 0 of the master via the MISO

pin. After 8 clock pulses or shifts, this bit will eventually end up

in bit 7 of the master .The clock, which controls how fast the

bits are shifted out and into SP0DR, is the signal SCLK. The

SSpin must be low to select a slave. This signal can come from

any pin on the master, including its SSpin when it is configured

as an output.

Fig.4 Two SPI modules Connected in a Master-Slave

Configuration.

Features of SPI protocol

 Full duplex synchronous serial data transfer.

 Variable length of transfer word up to 128 bit.

 MSB or LSB first data transfer.

 Rx and Tx on both rising or falling edge of serial clock

independently.

 8 slave select lines.

 Fully static synchronous design with one clock domain.

 Technology independent.

Fig. 5 block diagram of SPI MASTER.

 The Serial Peripheral Interface (SPI) bus is a full-duplex

serial link used for short-range communication between devices.

It is a protocol developed by Motorola that has since become

Design and Verification of APB to SPI Interface

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.10, October-2016, Pages: 0994-0998

facto standard for communication between master and slave

devices in embedded systems, and is also used by sensors and

SD cards. The SPI protocol consists of only four signals, shown

in above SCLK (serial clock) is output from the master de-vice

to the slave device and controls the rate of the data transfer.

MOSI (master output slave input) and MISO (master input slave

output) are the two data transfer signals, each of which transmits

one bit per SCLK cycle. SS (slave select) is the signal from the

master which enables the slave device for serial data transfer.fig

5 shows the block diagram for the SPI master IDLE is the

normal state of the SPI. When a transfer is necessary the bus

relocates into the SETUP state, where the suitable select signal,

ENABLE is asserted .The bus only waits in the SETUP state for

one clock cycle and always moves to the ACCESS state on the

next rising edge of the clock. ACCESS will enable signal,

TX_addr , is asserted in the ACCESS state. The write, write

data signals, select, and address must remain stable during the

transition from the SETUP to ACCESS state. ACCESS state is

controls when to exit by the counter signal from the master.

These are the conditions one is if counter is held LOW by the

master then the peripheral bus remains in the ACCESS state

another is counter is driven HIGH by the slave then the

ACCESS state is exited and the bus returns to the IDLE state if

no more transfers are required after that it will start the same

cycle.fig 6.

Fig. 6 state diagram for SPI master.

Fig. 7 block diagram for SPI controller.

 This SPI controller provides an interface between an APB

slaves with a SPI master. The outputs of APB slave are the

inputs of SPI controller and the inputs of SPI master are the

outputs of SPI controller.SPI controller performs following

three operations i) When address is zero it goes to cmd_fifo.ii)

when address is one it goes to wdata_fifo and write the data.iii)

when address is two it goes to rdata_fifo and read the data.The

SPI controller has two modes of operation, master or slave

mode. This is selected with the address. In master mode the SPI

controls the communication between the master and the slaves,

while in slave mode the slave is enabled by the chip select pin is

pulled low.fig 7 shows the block diagram for SPI controller.

IDLE is the normal state of the SPI controller. When a transfer

is necessary the bus relocates into the cmd_fifo empty where

performs the operations .i)master_wdata<=wdata_fifo_rdata

and wdata_fifo reads the 1bit.When mater is free it performs the

operations i)master enable<=1’b1.ii)operation<=write

operation.iii)master_wdata<=master_wdata. When master is not

free it waits for master finish and then it goes for read done

state. When read_done state is exited and the bus returns to the

IDLE state if no more transfers are required after that it will

start the same cycle as shown in Fig.8.

Fig. 8 state diagram for SPI controller.

 III. METHOD OF IMPLEMENTATION

Fig. 9 APB to SPI interface diagram.

D. ANJALI, A. RADHIKA

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.10, October-2016, Pages: 0994-0998

 The outputs of APB slave are inputs of SPI controller and

inputs of SPI master are outputs of SPI controller. The outputs

of SPI controller are inputs of SPI master. The outputs of SPI

master are inputs of SPI slave memory. The APB only supports

single-word 32-bit accesses. Bits [1:0] of the PADDR signal are

not used within the memory controller, resulting in byte and

half-word accesses being treated as word accesses as shown in

Fig.9. The APB interface enables the memory controller state of

operation in addition to programming the memory controller

with the correct timings and settings for the connected memory

type. The APB interface also initializes the connected memory

devices see Initialization. The Serial Peripheral Interface (SPI)

bus is a full-duplex serial link used for short-range

communication between devices. It is a protocol developed by

Motorola that has since become facto standard for

communication between master and slave devices in embedded

systems, and is also used by sensors and SD cards.

Fig. 10 implementation algorithm for the design of APB to

SPI interface.

TheSPI protocol consists of only four signals, shown in above

SCLK (serial clock) is output from the master de-vice to the

slave device and controls the rate of the data transfer. MOSI

(master output slave input) and MISO (master input slave

output) are the two data transfer signals, each of which transmits

one bit per SCLK cycle. SS (slave select) is the signal from the

master which enables the slave device for serial data transfer.

This SPI controller provides an interface between an APB

slaves with a SPI master. The outputs of APB slave are the

inputs of SPI controller and the inputs of SPI master are the

outputs of SPI controller.SPI controller performs following

three operations i) When address is zero it goes to cmd_fifo .ii)

when address is one it goes to wdata_fifo and write the data.iii)

when address is two it goes to rdata_fifo and read the data. The

SPI controller has two modes of operation, master or slave

mode. This is selected with the address. In master mode the SPI

controls the communication between the master and the slaves,

while in slave mode the slave is enabled by the chip select pin is

pulled low.fig 10 shows the APB to SPI interface diagram.

 IV. SYNTHESIS AND SIMULATION

Fig. 11 RTL schematic for APB to SPI interface.

Fig. 12. APB bus driving APB slave.

 In the above figs.11 and 12 we can see the APB BUS

driving the APB slave. There are 3 write transactions.

PADDR=0, PWRITE=1, PWDATA=32’habcd.

PADDR=1 PWRITE =1, PWDATA = 32’ha5a5a5a5.

.PADDR=0 PWRITE =1, PWDATA = 32’h2bcd.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0331f/Cjadcfjf.html

Design and Verification of APB to SPI Interface

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.10, October-2016, Pages: 0994-0998

Fig. 13. APB slave writing into SPI controller registers.

 The data received by the APB slave is written into the SPI

Controller registers. SPI Controller has 2 register FIFOs,

Control and address register FIFO with register address as 0 and

Data register FIFO with register address 1. APB write with

PADDR =0 in Fig.13 is translated into a SPI Controller register

write with address 0 (i.e. control and address register).

PWDATA received on the APB BUS will be written as is.

After the 3 transactions in Fig.14 Control FIFO has 2 entries –

16’habcd and 16’h2bcd and Data FIFO has 1 entry

32’ha5a5a5a5.

Fig. 14.SPI controller writing into SPI master.

 The SPI Controller translates the information in its FIFOs

to write and read transactions to be executed by the SPI master.

The first entry in Control FIFO is 16’habcd which translates to

1010_1011_1100_1101 .The 16
th

 bit indicates a write or read

transaction. The 16
th

 bit here is 1 which means it is a SPI write

transaction as shown in Fig.15. The rest of the 15 bits indicate

the SPI address which is 15’h2bcd here. The SPI Controller

indicates the SPI master to do a SPI write transaction

(spi_master_wr_rdbar=1)to address 15’h2bcd (spi_master_addr)

and data 32’ha5a5a5a5 (spi_master_wdata) which the

Controller fetches from its Data FIFO.

Fig. 15. SPI master to SPI slave.

V. CONCLUSION

 To avoid high power requirements we can design this project.

In this project we design an APB slave which acts as an SPI

master and interacts with an off chip SPI slave through the SPI

bus. Our design acts as in interface between the peripheral bus

of the SOC (APB) and SPI which is one of the popular serial

protocols for communication between ICs.

Future Scope: We have one SPI slave memory in our system.

The system could be extended to have multiple SPI slaves with

different functionalities like FUSES, camera, etc. Slave address

decoding would be required to be added to the SPI Controller to

distinguish accesses to different slaves and SPI master would

need to generate corresponding SSELs to the corresponding

slaves.

VI. BIBLIOGRAPHY

[1]hhttp://arm.com/about/trademarks/arm-trademark-

list/AMBA-trademark.php

[2]http://www.corelis.com/products-bus-analyzers/

[3] Queued Serial Module Reference Manual

[4]ww.ti.com/lit/ug/sprufm4i/sprufm4i.pdf

[5]ww,latticesemi.com/~/media/.../SZ/SPISlaveController-

Documentation.PDF

[6]ip.cadence.com/uploads/435/Cadence_32bit_APB_SPI_dspd

f

[7]https://web.eecs.umich.edu/~prabal/teaching/eecs373-

f10/readings/CoreSPI_HB.pdf

[8]https://web.eecs.umich.edu/~prabal/teaching/eecs373-

f11/slides/lec5.ppt

