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Abstract: Approximation of discrete cosine transform (DCT) is useful for reducing its computational complexity without 

significant impact on its coding performance. Most of the existing algorithms for approximation of the DCT target only the DCT 

of small transform lengths, and some of them are non-orthogonal. This paper presents a generalized recursive algorithm to obtain 

orthogonal approximation of DCT where an approximate DCT of length could be derived from a pair of DCTs of length at the 

cost of additions for input preprocessing. We perform recursive sparse matrix decomposition and make use of the symmetries of 

DCT basis vectors for deriving the proposed approximation algorithm.  Proposed algorithm is highly scalable for hardware as 

well as software implementation of DCT of higher lengths, and it can make use of the existing approximation of 8-point DCT to 

obtain approximate DCT of any power of two length, .We demonstrate that the proposed approximation of DCT provides 

comparable or better image and video compression performance than the existing approximation methods. It is shown that 

proposed algorithm involves lower arithmetic complexity compared with the other existing approximation algorithms. We have 

presented a fully scalable reconfigurable parallel architecture for the computation of approximate DCT based on the proposed 

algorithm. One uniquely interesting feature of the proposed design is that it could be configured for the computation of a 32-point 

DCT or for parallel computation of two 16-point DCTs or four 8-point DCTs with a marginal control overhead. The proposed 

architecture is found to offer many advantages in terms of hardware complexity, regularity and modularity.  
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I. INTRODUCTION 

    The discrete cosine transform (DCT) is popularly used in 

image and video compression. Since the DCT is 

computationally intensive, several algorithms have been 

proposed in the literature to compute it efficiently. Recently, 

significant work has been done to derive approximate of 8-

point DCT for reducing the computational complexity. The 

main objective of the approximation algorithms is to get rid 

of multiplications which consume most of the power and 

computation time, and to obtain meaningful estimation of 

DCT as well. Haweel has proposed the signed DCT (SDCT) 

for 8 X8 blocks where the basis vector elements are replaced 

by their sign, i.e, 1. Bouguezel-Ahmad-Swamy (BAS) have 

proposed a series of methods. They have provided a good 

estimation of the DCT by replacing the basis vector elements 

by 0, 1/2, 1. In the same vein, Bayer and Cintra  have 

proposed two transforms derived from 0 and 1 as elements of 

transform kernel, and have shown that their methods perform 

better than the method, particularly for low- and high-

compression ratio scenarios. The need of approximation is 

more important for higher-size DCT since the computational 

complexity of the DCT grows nonlinearly. On the other hand, 

modern video coding standards such as high efficiency video 

coding (HEVC) [10] uses DCT of larger block sizes (up to 

32X 32) in order to achieve higher compression ratio. But, 

the extension of the design strategy used in H264 AVC for 

larger transform sizes, such as 16-point and 32-point is not 

possible. Besides, several image processing applications such 

as tracking and simultaneous compression and encryption  

require higher DCT sizes.  

      In this context, Cintra has introduced a new class of 

integer transforms applicable to several block-lengths. Cintra 

have proposed a new 16 X16 matrix also for approximation 

of 16-point DCT, and have validated it experimentally. 

Recently, two new transforms have been proposed for 8-point 

DCT approximation: Cintra et al. have proposed a low-

complexity 8-point approximate DCT based on integer 

functions  and Potluri  et al. have proposed a novel 8-point 

DCT approximation that requires only 14 addition . On the 

other hand, Bouguezel  have proposed two methods for 

multiplication-free approximate form of DCT. The first 

method is for length , 16 and 32; and is based on the 

appropriate extension of integer DCT. Also, a systematic 

method for developing a binary version of high-size DCT 

(BDCT) by using the sequency-ordered Walsh-Hadamard 

transform (SO-WHT) is proposed in. This transform is a 

permutated version of the WHT which approximates the 

DCT very well and maintains all the advantages of the WHT. 

A scheme of approximation of DCT should have the 

following features: 

 It should have low computational complexity. 
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 It should have low error energy in order to provide 

compression performance close to the exact DCT, 

and preferably should be orthogonal. 

 It should work for higher lengths of DCT to support 

modern video coding standards, and other 

applications like tracking, surveillance, and 

simultaneous compression and encryption. 

 

       But the existing DCT algorithms do not provide the best 

of all the above three requirements. Some of the existing 

methods are deficient in terms of scalability, generalization 

for higher sizes, and orthogonality. We intend tomaintain 

orthogonality in the approximate DCT for two reasons. 

Firstly, if the transform is orthogonal, we can always find its 

inverse, and the kernel matrix of the inverse transform is 

obtained by just transposing the kernel matrix of the forward 

transform. This feature of inverse transform could be used to 

compute the forward and inverse DCT by similar computing 

structures.  

II. DISCRETE COSINE TRANSFORM 

      The DFT is not the only transform that is widely used in 

applications Published standards for image and video coding 

(compression) make use of the DCT 

 JPEG (1989) 

 MPEG1, 2, and 4 

 MPEG1 (1992): video CD players, storage and 

retrieval of moving pictures and audio on 

storage media 

 MPEG2 (1994): HDTV, DVD, standard for 

Digital TV (cable) 

 MPEG3, originally targeted for HDTV, was 

incorporated into MPEG2 

 MPEG4 (late 1998): standard for multimedia 

applications, targeted for wireless video 

 H.261, H.263 

 H.261 (circa 1993): video conferencing 

 H.263 (circa 1995): wireless video 

       These standards provide instructions for decoding the 

signal, but there is often considerable freedom for encoding 

the signal.  

III. COMPRESSION 

      Two classes of compression algorithms try to reduce the 

number of bits required to represent a signal. lossless: 

compression ratios around 2-3:1 for data files, lossy: 

compression ratios up to 1000:1 for video. For wireless 

video, need compression ratios up to 1000:1.  Can get near 

lossless video compression at 8:1 with little degradation. 

Compression algorithms work by removing redundancy in 

the signal.  In video signals, the redundancy can be of three 

forms.  statistical: (e.g. Huffman codes, arithmetic, Lempel-

Ziv), spatial: (e.g. vector   uantization, DCT, subband coders, 

wavelets), temporal: (e.g. motion compensation) Wavelet 

compression is used in JPEG-2000, MPEG4, and H.263+ 

Transform coders decompose a frame into blocks, typically 8 

x 8.  In MPEG2, they are called acroblocks and divide the 

frame into luminance (intensity) and chrominance (color) 

images (YUV).  Luminance image: one 16 x 16 macroblock 

or four 8 x 8 macroblocks (Y), chrominance image: two 8 x 8 

blocks (UV) A 2-D DCT of each block is computed and the 

transform coefficients are quantized.  Quantized coefficients 

are coded losslessly.  The choice of quantization affects the 

transmission rate and distortion.  Advantages of the DCT 

(relative to the DFT) real-valued, better energy compaction 

(much of the signal energy can be represented by only a few 

coefficients), coefficients are nearly uncorrelated, 

experimentally observed to work well 

IV. DCT APPROXIMATION 

The elements of -point DCT matrix  are given by: 

                                 (1) 

where  ,  , and  for 

 0. The DCT given by (1) is referred to as exact DCT in 

order to distinguish it from approximated forms of DCT. For 

 and  , for any even value of   

we can  

                          (2) 

Since   , (2) can be rewritten as: 

               (3) 

      Hence, the cosine transform kernel on the right-hand side 

of (3) corresponds to  -point DCT and its elements can 

be assumed to be  , for   . Therefore, 

the first  elements of even rows of DCT matrix of size 

correspond to the  -point DCT matrix. Accordingly, the 

recursive decomposition of  can be performed as 

detailed. Using the even/odd symmetries of its row vectors, 

DCT matrix can be represented by the following matrix 

product. 

                                                          (4) 

Where  is a block sparse matrix expressed by: 

                                                        (5) 

Where  is the  zero matrix. Block sub 

matrix  consists of odd rows of the first  columns 

of  . is a permutation matrix expressed by:  

         (6) 

Where  is a row of zeros  and  is a 

matrix defined by its row vectors as: 
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 (7) 

Where  is the  th row vector of the 

  identity matrix. Finally, the last 

matrix in (4),  is defined by: 

                                                 (8) 

Where  is an  matrix having all ones 

on the anti-diagonal and zeros elsewhere. 

 

      To reduce the computational complexity of DCT, the 

computational cost of matrices presented in (4) is required to 

be assessed. Since does not involve any arithmetic or 

logic operation, and  requires additions and 

 subtractions, they contribute very little to the total 

arithmetic complexity and cannot be reduced further. 

Therefore, for reducing the computational complexity of -

point DCT, we need to approximate  in (5). Let  

and  denote the approximation matrices of  and  

 , respectively. To find these approximated sub 

matrices we take the smallest size of DCT matrix to 

terminate the approximation procedure to 8, since 4-point 

DCT and 2-pointDCT can be implemented by adders only. 

Consequently, a good approximation of   , where  is 

an integral power of two, for   , leads to a proper 

approximations of  and   . For approximation of  

we can choose the 8-point DCT since that presents the best 

trade-off between the number of required arithmetic 

operators and quality of the reconstructed image. The trade-

off analysis shows that approximating  by 

where denotes the rounding-off operation outperforms the 

current state-of-the-art of 8-point approximation methods. 

       When we closely look at (4) and (5), we note that  

operates on sums of pixel pairs while  operates on 

differences of the same pixel pairs. Therefore, if we replace

 by   , we shall have two main advantages. Firstly, we 

shall have good compression performance due to the 

efficiency of  and secondly the implementation will be 

much simpler,scalable and reconfigurable. For approximation 

of   we have investigated two other low-complexity 

alternatives, and in the following we discuss here three 

possible options of approximation of  : 

 The first one is to approximate  by null matrix, which 

implies all even-indexed DCT coefficients are assumed  

to be zero. The transform obtained by this approximation 

is far from the exact values of even-indexed DCT 

coefficients, and the odd coefficients do not contain any 

information. 

 The second solution is obtained by approximating  

by an 8X8 matrix where each row contains one 1 and all  

other elements are zeros. Here, elements equal to 1 

correspond  to the maximum of elements of the exact 

DCT in  each row. The approximate transform in this 

case is closer to the exact DCT than the solution 

obtained by null matrix. 

 The third solution consists of approximation of  by  

   Since  as well as  are sub matrices of  

and operate  on matrices generated by sum and 

differences of  pixel pairs at distance of 8, approximation 

of  by  has attractive computational properties: 

regularity of the signal-flow graph, orthogonality since 

 is orthogonalizable, and good compression 

efficiency, other than scalability  and scope for 

reconfigurable implementation.  

 

       We have not done exhaustive search of all possible 

solutions. So there could be other possible low-complexity 

implementation of   . But other solutions are not expected 

to have the potential for reconfigurablity what we achieve by 

replacement of by . Based on this third possible 

approximation we have obtained the proposed approximation 

of  as :  

                              (9) 

As stated before, matrix  is orthogonalizable. Indeed, for 

each  we can calculate  given by: 

                                         (10) 

where denotes matrix transposition. For data compression, 

we can use  instead of  since . 

Since is a diagonal matrix, it can be integrated into the 

scaling in the quantization process (without additional 

computational complexity). Therefore, as adopted, the 

computational cost of  is equal  to that of  . Moreover, 

the term can be integrated in the quantization step in order to 

have multiplier less architecture. The procedure for the 

generation of the proposed orthogonal approximated DCT is 

stated in Algorithm 1. 

 

Fig. 1. Signal flow graph (SFG) of . Dashed arrows 

represent multiplications by 1. 
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A. Scalable And Reconfigurable Architecture For Dct 

Computation 

In this section, we discuss the proposed scalable 

architecture for the computation of approximate DCT of  

and 32.We have derived the theoretical estimate of 

its hardware complexity and discuss the reconfiguration 

scheme. The basic computational block of algorithm for the 

proposed DCT approximation,  is given. The block 

diagram of the computation of DCT based on  is shown in 

Fig1. For a given input sequence  , the 

approximate DCT coefficients are obtained by   . 

An example of the block diagram of  is illustrated in 

Fig. 2, where two units for the computation of  are used 

along with an input adder unit and output permutation unit. 

The functions of these two blocks are shown respectively in 

(8) and (6).Note that structures of 16-point DCT of Fig. 2 

could be extended to obtain the DCT of higher sizes. For 

example, the structure for the computation of 32-point DCT 

could be obtained by combining a pair of 16-point DCTs 

with an input adder block and output permutation block.       

To assess the computational complexity of proposed –

point approximate DCT , we need to determine 

the computational cost of matrices quoted in (9). As shown in 

Fig. 1 the approximate 8-point DCT involves 22 additions. 

 
Fig. 2. Block diagram of the proposed DCT for  

  Since has no computational cost and  requires 

additions for  –point DCT, the overall arithmetic 

complexity of 16-point, 32-point, and 64-point DCT 

approximations are 60, 152, and 368 additions, respectively. 

More generally, the arithmetic complexity of -point DCT is 

equal to additions. Moreover, since the structures for the 

computation of DCT of different lengths are regular and 

scalable, the computational time for  DCT coefficients can 

be found to be   where  is the addition-

time. The number of arithmetic operations involved in 

proposed DCT approximation of different lengths and those 

of the existing competing approximations are shown in Table 

I. It can be found that the proposed method requires the 

lowest number of additions, and does not require any shift 

operations. Note that shift operation does not involve any 

combinational components, and requires only rewiring during 

hardware implementation. But it has indirect contribution to 

the hardware complexity since shift-add operations lead to 

increase in bit-width which leads to higher hardware 

complexity of arithmetic units which follow the shift-add 

operation. Also, we note that all considered approximation 

methods involve significantly less computational complexity 

over that of the exact DCT algorithms. According to the 

Loeffler algorithm, the exact DCT computation requires 29, 

81, 209, and 513 additions along with 11, 31, 79, and 191 

multiplications, respectively for 8, 16, 32, and 64-point 

DCTs. 

 
Fig.3.Proposed reconfigurable architecture for 

approximate DCT of lengths .  

B. Proposed Reconfiguration Scheme 

       As specified in the recently adopted HEVC, DCT of 

different lengths such as , 16, 32 are required to be 

used in video coding applications. Therefore, a given DCT 

architecture should be potentially reused for the DCT of 

different lengths instead of using separate structures for 

different lengths. We propose here such reconfigurable DCT 

structures which could be reused for the computation of DCT 

of different lengths. The reconfigurable architecture for the 

implementation of approximated 16-point DCT is shown in 

Fig. 3. It consists of three computing units, namely two 8-

point approximated DCT units and a 16-point input adder 

unit that generates  And  , . The 

input to the first 8-point DCT approximation unit is fed 

through 8 MUXes that select either 

 or  , 

depending on whether it is used for 16-point DCT calculation 

or 8-point DCT calculation. Similarly, the input to the second 

8-point DCT unit (Fig. 3) is fed through 8 MUXes that select 

either or , depending on whether it is used for 16-point DCT 

calculation or 8-point DCT calculation. On the other hand, 

the output permutation unit uses 14 MUXes to select and re-

order the output depending on the size of the selected DCT. 

 is used as control input of the MUXes to select inputs 

and to perform permutation according to the size of the DCT 

to be computed. Specifically,  enables the 

computation of 16-point DCT and  enables the 

computation of a pair of 8-point DCTs in parallel. 

Consequently, the architecture of Fig. 3 allows the 
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calculation of a 16-point DCT or two 8-point DCTs in 

parallel. 

V. RESULTS 

       Results of this paper is as shown in bellow Figs.4 to 6. 

 
Fig.4.RTL schematic. 

 
Fig.5.Technological schematic. 

 
Fig.6.Waveforms. 

VI. CONCLUSION 

      In this paper, we have proposed carry select adder logic 

for recursive algorithm to obtain orthogonal approximation of 

DCT where approximate DCT of length  could be derived 

from a pair of DCTs of length  instead of   additions 

for input preprocessing. The proposed carry select logic for 

the approximated DCT has several advantages, such as of 

regularity, structural simplicity, lower-computational 

complexity, and scalability. Along with these we have 

another advantage, that is latency (delay) is reduced by 

18.67% then the previous addition techniques. We have also 

proposed a fully scalable reconfigurable architecture for 

approximate DCT computation where the computation of 32-

point DCT could be configured for parallel computation of 

two 16-point DCT’s or four 8-point DCT’s. This can also be 

extended to  point DCT by using   point DCT, with 

reduced latency. 
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