

ISSN 2322-0929

Vol.03, Issue.10,

December-2015,

Pages:1490-1498

 www.ijvdcs.org

Copyright @ 2015 IJVDCS. All rights reserved.

Encryption Methods in Galios Field to Make An Efficient Area and Delay

Cryptographic Processor
B. NIRANJANI

1
, BEJJENKI SHIVA KUMAR

2
, P. PRASAD RAO

3

1
PG Scholar, Dept of ECE, Vagdevi College of Engineering, Bollikunta, Warangal, Telangana, India,

Email:niranjanibollam@gmail.com.
2
Assoc Prof, Dept of ECE, Vagdevi College of Engineering, Bollikunta, Warangal, Telangana, India,

Email: shivakumar.bejjenki@gmail.com.
3
HOD, Dept of ECE, Vagdevi College of Engineering, Bollikunta, Warangal, Telangana, India,

Email: Prasad rao_hod@yahooo.co.in.

Abstract: To support emerging pairing-based protocols related to cloud computing, an efficient algorithm/hardware code sign

methodology of ηT pairing over characteristic three is presented. By mathematical manipulation and hardware scheduling, a

single Miller’s loop can be executed within 17 clock cycles. Furthermore, we employ torus representation and exploit the

Frobenius map to lower the computation cost of final exponentiation. Pipelining and parallelization datapath are also exploited to

shorten the critical path delay. Finally, by choosing suitable multiplier architecture and selecting an appropriate number of

multipliers, Miller’s loop and final exponentiation can be computed in a fully pipelined manner. With these schemes, a test chip

for the proposed pairing accelerator has been fabricated in 90-nm CMOS 1P9M technology with a core area of 1.52 × 0.97 mm2.

It performs a bilinear pairing computation over F(397) in 4.76 μs under 1.0 V supply and achieves 178% improvement to relative

works in terms of area–time (AT) product. To support higher level of security, a 126-bit secure pairing accelerator that can

complete a bilinear pairing computation over F(3709) in 36.2 μs is implemented and this result is at least 31% better than relative

works in terms of AT product.

Keywords: Application-Specific Integrated Circuit (ASIC) Implementation, Elliptic Curve, Ηt Pairing.

I. INTRODUCTION

 In 2000, Mitsunari etal., Sakai etal., and Joux independently

discovered constructive properties of bilinear pairing [1].

One year later, Boneh and Franklin [2] solved a long lasting

problem of identity-based cryptography based on bilinear

pairing. Since then, an ever increasing number of protocols

based on the bilinear pairing have appeared in the literature.

In recent years, cloud computing becomes a promising

alternative to traditional local services. However, security

and privacy issues may prevent wide acceptance in practice

since the data no longer store on personal devices. To provide

privacy and enhance security for users, myriad of

cryptography protocols based on bilinear pairing have been

presented to resolve this problem, such as [3] and [4].

Specifically, Sahai and Waters [3] introduced a protocol

realizing the confidentiality and fine-grained access control

of data based on the attribute-based encryption. On the other

hand, Boneh et al. [4] facilitate the data owner efficiently

search the files stored by cloud servers while prevents cloud

servers from learning both the data file contents and user

query information. Furthermore, the properties of bilinear

pairing allows ID-based authentication, ID-based encryption,

and hence certificate less key management becomes practical

[5]. In 2008, IEEE established the draft standard for pairing-

based cryptography [6]. Such protocols rely critically on

efficient algorithms and implementations of pairing

primitives. According to [1], when dealing with general

curves providing common levels of security, the Tate pairing

is more efficiently computable than the Weil pairing.

Significant improvements were independently proposed in

[7] and [8].

 Barreto et al.[9] and Hess et al[10] introduced the ηT pairing

and Ate pairing, respectively, which further shortens the loop

of Miller’s algorithm. We choose ηT pairing in this paper

since it is symmetric pairing, which can support more

protocols. Moreover, the ηT pairing is defined on super

singular curve, which can achieve substantially computation

reduction by choosing suitable distortion map and using

ternary field arithmetic. The ηT pairing contains two major

steps [1]: 1) Miller’s loop and 2) final exponentiation. To

enhance throughput, the hardware of Miller’s loop and final

exponentiation can work independently, as the former data

are completed with the computation of Miller’s algorithm

and follows by the final exponentiation, the latter data can be

activated to start the computation of Miller’s algorithm

simultaneously. In [11]–[13], however, the computation time

of Miller’s algorithm and final exponentiation are far from

balanced, which is hard to employ fully pipeline techniques

to enhance throughput. In this paper, a new ηT pairing

B. NIRANJANI, BEJJENKI SHIVA KUMAR, P. PRASAD RAO

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

accelerator for high-speed pairing-based protocols is

proposed. To reduce the execution cycles of Miller’s loop,

algorithm selection and hardware scheduling are exploited

and analyzed. Moreover, the torus representation and

mathematical manipulation are used to shorten the final

exponentiation time. In addition, the number and architecture

of multipliers are selected and scheduled so that these two

major steps can be computed in a fully pipelined manner. The

major contributions of this paper are highlighted here.

1. Considering the recent attack proposed in [14], we

suggest using larger field to achieve 126-bit security

level. To mitigate the corresponding increase of

computation overhead, we carefully choose algorithm

parameters including reduction polynomial, field

element encoding method, paring algorithm, and so on.

2. This paper reducing the computation cost of both

Miller’s loop and final exponentiation by applying

several state-of-the art optimization.

3. By designing suitable multiplier architecture and

employing pipelining and parallelization, the

implementation result outperforms relative works in

terms of speed and hardware efficiency.

The rest of this paper is organized as follows. The

algorithm of ηT pairing as well as its parameter selections are

presented in SectionII. The improved pairing arithmetic

including Miller’s loop and final exponentiation are proposed

and analyzed in Section III. Moreover, Section IV reports the

hardware architecture of our proposed pairing accelerator as

well. The measurement results of a 90-nm test chip and 126-

bit security level accelerator as well as the comparisons

against relative works are given in Section V. Finally,

Section VI concludes this paper.

II. BACKGROUND

A. Symmetric Pairings

In most of the protocols, symmetric pairing is often

selected as it allows simpler and briefer mathematical

statements and definitions. Let G1 be an abelian group with

additive identity element O and r is a positive integer.

Suppose G1 has order r , which means [r]P = O for all P ∈

G1. Suppose G2 is a cyclic group of the same order r with

multiplicative identity element one. A symmetric pairing is a

map e: G1×G1→ G2. Note e should be feasibly computable,

bilinear in both group, and non degenerate, which enables the

construction of novel and efficient cryptography protocols.

Let n be an integer, then the most crucial function in pairing

is Miller’s function fn,P, and the divisor of Miller’s function

is defined as (fn,P)=n(P)−([n]P)−(n−1)(O). Miller’s functions

are at the root of most pairing proposed for cryptographic

purpose. We refer the reader to [1] for the mathematical

details of divisor. To compute the function, one can use

Miller’s algorithm [15], which shows that a Miller’s function

satisfies the following observation up to a nonzero factor in

Fq: fm+n,P=fm,P·fn,P·l[n]P,[m]P/v[n+m]P where l[n]P,[m]P

denotes the line through [n]P and [m]P, and v[n+m]P is the

vertical line through [n + m]P. These two functions are so

called line function in the literature. An efficient algorithm

can be derived from the above formula, since with this

relation, the line function and hence Miller functions can be

computed using usual chord-and tangent method on elliptic

curve.

Algorithm 1 Miller’s Loop without Cube Roots of ηT

Pairing

B. ηT Pairing

 Let r be the largest prime factor of N, so that r 2 is not a

factor of N, where N is the order of the curve. Then, we can

write N=i·r, where i is a small positive integer. The ηT

pairing is a symmetric pairing that maps two points inr -

torsion groups into an element of the group of r th roots of

unity μr E(F3m)[r]×E(F3m)[r]→μr⊂ F
*

3km. The embedding

degree or security multiplier is the least positive integer k for

which μr is contained in the multiplicative group F
*
3km. The

curve used in this paper has k = 6, which is the maximum

value possible for super singular elliptic curves. Moreover,

let P, Q ∈ E(F3m)[r] and T = 3m − N, construct the divisor D

= (Q) − (O), and (fr, P) = r (P) −r (O). Such that supports of

D and (fr,P) are disjoint, then ηT pairing function ηT (P, Q) is

defined by
1

 (1)

Algorithm 2 Final Exponentiation of ηT Pairing

Encryption Methods in Galios Field to Make An Efficient Area and Delay Cryptographic Processor

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

 The above formula contains cube root operations. However,

cube root is substantially slower than calculations of cube in

hardware, thus we adopt a cube-free implementation of ηT

pairing, as shown in Algorithm 1 [11]. The result of ηT

pairing is mapped to a coset. To ensure unique output value

of ηT pairing, we have to raise it up to Mth power, where M =

(3
6m

−1)/N. This additional step is known as final

exponentiation. As suggested by[16], the final exponentiation

can be further factored to (3
3m

−1) (3
m
+1)(3

m
+1±3

(m+1)/2
),

which can lower the computation cost. To compute the final

exponentiation, [6] suggested to used composite field

representation ηT = F = f0 + f1σ + f2ρ + f3σρ + f4ρ
2
 +r5σρ

2
,

and the details are illustrated in Algorithm 2.

C. Parameter Selection

Let E be a super singular elliptic curve defined by E : y
2
 =

x
3
 − x + b, with b ∈ {−1, 1}. The order of curve is given as N

= 3
m
 + 1 + μb3

(m+1)/2
, with

 (2)

 As suggested by [17], one can choose a reduction

polynomial as a trinomial of the form P(x) = x
m
−x

n
+1 so that

the computation of cubing can be achieved by several

additions. Furthermore, the exponent n should be small, so

that the cubing cost can be further reduced. Because of

PARI/GP [18], we can obtain optimal trinomials in this

paper. Galbraith et al. [8] showed how to compute additions

of two elements a, b ∈ F3 using 12 AND, OR, XOR, and

NOT Boolean functions. Harrison et al. [19] noted that this

operation could be computed using only seven OR and XOR

logic operations. This was considered the minimal number of

logical operations for this arithmetic operation until

Kawahara et al. [20] presented an expression that only

requires six logical instructions. However, the benefits of this

construction are that the multiplication over F3 is pre

computed or it would require pre/post processing between

addition and multiplication, which is not suitable for high-

speed applications. Therefore, we choose the encoding

method proposed by Harrison.

Using Harrison’s encoding method, an element a ∈ F3 can

be written by two bits like a = (ah, al) for ah, al ∈ {0, 1}, ah =

a/2, al = a mod 2. Specifically, the symbols (0, 0), (0, 1), (1,

0) mean 0, 1, 2, respectively. Elements of the field F3m are

represented as polynomial basis. The field F3m can be

regarded as F3[x]/f (x), where the f (x) is a degree-m

irreducible trinomial. The multiplication c = a · b in F3 can

be written as: cl = (ah ∧bh)∨(al ∧bl) and ch = (ah ∧bl)∨ = (al

∧bh). For m-bit long F3 multiplication, we use serial–parallel

scheme to explore the tradeoff between time and area. By

[21], we can implement the multiplication over F3m by

processing an operand with D words at each clock cycle.

Therefore, in each step, we compute the degree m+D−2

partial product polynomials: All the

partial products are summed up by a degree m + D − 1

accumulator polynomial: s(x) = t (x)+x D · (s(x) mod f (x)).

After m/D steps, the output of a(x)b(x) mod f (x) is equal to

the polynomial s(x). Algorithm3 summarizes this

multiplication scheme. Cubing over F3m is a simple

arithmetic operation over the irreducible trinomial. The

operation number of addition/subtraction of cubing is

bounded by m + 2/3 · (2k + n) − 3, we refer the reader to [17]

for the detail of derivation. Instead of designing a specific

operator based on the extended Euclidean algorithm, we

suggest to keep the circuit area as small as possible by

performing inversion according to [22], which is based on

Fermats little theorem. Since this scheme requires only

multiplications and cubings over F3m , we do not have to

include dedicated hardware for inversion in our coprocessor.

Algorithm 3 Parallel–Serial Multiplication Over F3m

The security of the pairing is determined by the difficulty

of the Discrete Logarithm Problem (DLP) on the input curve

and on the output multiplicative group. The embedding

degree k acts as a cursor to adjust the size of the

multiplicative group F
*

qk with respect to that of Fq . The best

known algorithm to attack the DLP on the r -torsion is

Pollard’s ρ method [23] while the functional field sieve (FFS)

[24] is generally used to attack DLP on μr ⊂ F
*

qk . According

to [14], the improved FFS can solve the DLP with time

complexity The time complexity of the

improved FFS versus m is plotted in Fig. 1. We can find that

the previous work, which builds on F3509 [25], is not

sufficient to provide the 128-bit security level, as suggested

in [26]. Therefore, we list in Table I for a selection of prime

extension degrees m that enjoy large r -torsion subgroups.

For a given extension degree m, we use PARI/GP [18] to find

its corresponding curve, reduction trinomials, and the

estimated security level.

III. PROPOSED ηT PAIRING ARITHMETIC

In Algorithm 1, the composite field representation is used,

so that all the operations over F36m can be replaced by

arithmetic over F3m. In Algorithm 2, instead, we suggest to

use torus T2(F3
3m

) to compress the value of F
*
36m , which can

further reduced the cost of field operations compared with

composite field representation.

B. NIRANJANI, BEJJENKI SHIVA KUMAR, P. PRASAD RAO

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

A. Miller’s Loop

The most critical part of Algorithm 1 is at line 12, which

involves multiplication over F36m. Notice that it is a sparse

(i.e., some of its terms are trivial) multiplication over F36m ,

which allows us to optimize the computation. Bertoni et al.

[27] and Gorla et al. [28] take advantage of Karatsuba

multiplication and Lagrange interpolation, respectively, to

reduce the number of multiplications over F3m at the expense

of several additions. However, to keep the pipeline of our

multiplier busy, we have to embed a large multi operand

adder and irregular data path, which would deteriorate the

clock frequency. Thus, we do some manipulation on the

formula to reduce the number of additions while keeping the

number of multiplications small. We first represent F and G

using the composite field representation as follows:

 F = f0 + f1σ + f2ρ + f3σρ + f4ρ
2
 + f5σρ

2

 G = g0 + g1σ + g2ρ + g3σρ + g4ρ
2
 + g5σρ

2
. (3)

Fig.1. Time complexity estimation of solving DLP over

F(36m).

Table I: Parameter Selection

 According to line 7 in Algorithm 1, g3 = 0, g4 =−1, and g5

= 0 here, and we combine lines 12 and 7 in Algorithm 1 so

that F = FG becomes F = F
3
G. Furthermore, F

3
 can be

represented as (f03 + f23 + f43) + (− f13 − f33 −f53)σ +(

f23− f43)ρ+(−f33+f53)σρ+f43ρ2+(− f53)σρ2, we thus obtain

 (4)

 Considering hardware sharing, the formula can be

rewritten as follows:

 (5)

 Thus, the cost of sparse multiplication is 15 multiplications,

6 cubings, and 33 additions. Despite of the sparse

multiplications, there left two field multiplications, two

additions, and four cubings in Miller’s loop. Thus, the overall

cost is 17 field multiplication, 10 cubings, and 35 additions

over F3m in a single Miller’s loop.

B. Final Exponentiation

In Algorithm 2, the operations involve power of 3
3m −1

, 3
m

+ 1, and 3
(m+1)/2

 in F
*

36m . We aim at reducing the field

operation numbers, so that hardware complexity for final

exponentiation can be alleviated. The following section

depicts the idea of our implementation, and we take m = 97

to evaluate the detail cost of each operation to show the

improvement over relative works.

Encryption Methods in Galios Field to Make An Efficient Area and Delay Cryptographic Processor

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

1. Power of 3
3m

−1 in F
*

36m: Granger et al. [30] introduced the

torus T2(Fq3) for compressing value of Fq6, and we used

this idea to compute the power of 33m − 1 in F36m . Note

that F
*

36m is a second extension field of F
*

33m, thus every

element in F
*
36m can be represented as A = A0 + A1σ with

A0, A1 ∈ F
*

33m . Or more formally, torus T2(F3
m3

) = {A0 +

A1σ ∈ F
*

36m: (A0)2 + (A1)2 = 1}.

 (6)

 To compute the multiplication and squaring in F
*

33m ,

direct implementation will cost ten and six field

multiplications, respectively. We can use Karatsuba scheme

[31] to reduce the cost to six and five field multiplications,

respectively .On the other hand, to calculate the inversion in

F
*

33m, let B = b0 + b1ρ + b2ρ2 be the multiplicative inverse

of A =a0 + a1ρ + a2ρ2. Since AB = 1, we obtain the

following matrix:

 (7)

where w = (a0 + a1 + a2)
3
 − a0(a0a2 − a1

2
) + a2

2
(a0 − a1),

which involves seven field multiplications and one field

inversion. If we construct the squaring from multiplication,

power of 3
3m

 − 1 in F
*

36m requires 37 field multiplications, 71

additions, and one field inversions in F3m .

2. Power of 3m+1 in F
*
36m: For powering 3

m
+1 in F36m, we

still use the torus concept. We adopt the result in [28], which

requires nine field multiplications and 18 field additions.

3. Power of 3(m+1)/2 in F
*36m

: In this section, we take

advantage of Frobenius, so that the addition number can be

significantly reduced.

Let F = f0+ f1σ+ f2ρ+ f3σρ+ f4ρ2+f5σρ2 ∈ F
*

36m . Noting

that σ3i = (−1)i σ, ρ3i = ρ + ib, and(ρ
2
)3i = ρ2 − ibρ + i 2. We

obtain the following formula, depending on m:

 (8)

Take m = 97

 (9)

 Thus, to complete the final exponentiation power, we

requires 79 field multiplications, 390 field cubings, and 180

field additions for m=97. The comparison of these

computation costs with other state-of-the-art works are listed

in TableII. As shown in TableII, since Ronan et al.[12]

construct element in F36m using composite field

representation instead of torus representation, their

computation cost is markedly larger than ours. On the other

hand, though Beuchat et al.[29] also employ torus

representation, they do not take advantage of Frobenius and

some mathematical manipulation, thus their computation cost

is still higher than ours.

IV. HARDWARE ARCHITECTURE FOR ηT PAIRING

ACCELERATOR

To justify the need of building hardware accelerator in

system, we first implement the ηT pairing algorithm in

software in the context of pairing protocols [4] using

MIRACL SDK [32], where the results are shown in Table III.

The result shows that when building the pairing protocol, the

bilinear pairing is the most time critical part. Furthermore,

the computation time of elliptic curve scalar multiplication

(ECSM) takes much time as well, thus it may be beneficial to

compute both bilinear pairing and ECSM using hardware

accelerator. Our pairing accelerator wrapped with AMBA

AHB bus can work with the ECSM accelerator in [33]–[35]

to alleviate the bottleneck of pairing protocols.

Table II: Comparison among Previous Works in Final

Exponentiation for m = 97

Table III: Profiling of A Pairing Protocol [4]

 Fig. 2 shows our overall proposed pairing accelerator with

a standard AMBA AHB interface. For supporting arbitrary

field length, the pairing arithmetic unit is designed to have

programmable datapath. The ηT pairing can be calculated

using pairing arithmetic unit controlled by the main

controller. The Miller’s algorithm is an iterative algorithm,

while final exponentiation involves irregular computation. To

achieve high-speed requirement, we design two independent

dedicate hardware modules for Miller’s algorithm and final

exponentiation, respectively. By choosing appropriate

B. NIRANJANI, BEJJENKI SHIVA KUMAR, P. PRASAD RAO

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

multiplier architecture and selecting adequate number of

multipliers, we pipeline these two steps to enhance

throughput.

Fig.2. Block diagram of our proposed pairing accelerator.

Table IV: Hardware Scheduling of Miller’s Loop

A. Miller’s Loop Implementation

Multiplication is the pertinent operation of a bilinear

pairing computation, as stated in Section III. Variants of

parallel–serial and Karatsuba multiplier are by far the most

efficient two used in the context. To study a wide range of

implementation strategies, we write a Verilog code generator

for parallel– serial multiplier and modify the Verilog code

generator in [36], which can produce variants of Karatsuba

multipliers. The parallel–serial multiplier seems to be more

attractive because it has smaller area overhead. However, we

should carefully deal with the scheduling and manage to keep

the pipeline busy. To enhance throughput while still

maintaining a competitive critical path delay, we design a

seven-stage parallel–serial multiplier. The coprocessor shown

in Fig. 2 embeds this seven stage fully pipelined parallel–

serial multiplier, which is similar to our seven-stage pipelined

parallel–serial multiplier stated in the following section

except the hardware is duplicated and control is altered as

well. There is a four-input adder to support the field addition,

subtraction, and accumulation in Algorithm1. A standalone

cubing unit that can complete a cubing operation in one cycle

is also included. With these arithmetic units, the 17

multiplications in each iteration of Miller’s loop is scheduled

at higher priority, and the field additions and field cubings

are parallel computed with multiplication, as shown in Table

IV. In Table III, MUL IN1, MUL IN2, and MUL OUT

denote the two inputs and output of the multiplier,

respectively, and CUBE indicates the cycle when cubing

operation is conducted. The OUT is the output of the Miller’s

loop coprocessor. We aim to keep the pipeline busy, so that

the data dependency is avoided and the register usage is

minimized. From the scheduling result, each single Miller’s

loop can be completed in 17 clock cycles with the proposed

coprocessor, thus Algorithm 1 can be completed in 17 · (m +

1)/2 cycles including the initial step.

Fig. 3. Seven-stage pipelined parallel–serial multiplier.

Encryption Methods in Galios Field to Make An Efficient Area and Delay Cryptographic Processor

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

B. Final Exponentiation Implementation

 Note that the critical operations in Algorithm 2 are

multiplications and long sequences of cubings, which are

different from the design of Miller’s coprocessor. As a result,

we propose a new module for arithmetics in final

exponentiation. The computation cost of final exponentiation

is smaller than Miller’s loop according to Section III, thus we

can deploy a slightly more serial architecture to reduce

hardware cost. Inputs and outputs, as well as intermediate

results, are stored in a dual-port random access memory since

the hardware scheduling involves simultaneously read to the

register file. The coprocessor embeds three seven-stage

pipelined parallel– serial multipliers, as shown in Fig. 3, to

match the computation time of Miller’s loop. Note that in

Algorithm 3 the operation ×x
D
 involves only wiring, and a

single modulo f (x) reduction is needed in each iteration. As

previously mentioned, since trinomial is chosen as the

irreducible polynomial, reduction can be done by performing

several additions. We also embed a four-input adder and a

cubing unit to deal with addition, subtraction, and cubing

operations. This architecture allows us to efficiently

implement the final exponentiation algorithm, and the cycle

count compared with previous design is listed in Table II.

Finally, Miller’s loop and the final exponentiation are

computed in a pipelined manner in our design, and we can

learn that the computation time of these two steps are nearly

equal. Therefore, the throughput of this pairing accelerator

almost doubles the throughput of non pipelined pairing

accelerator.

Fig.4. Chip micrograph of our proposed pairing

accelerator.

V. IMPLEMENTATION RESULTS

 With our proposed pairing arithmetic, hardware scheduling,

pipelining multiplier architecture, and parallelism scheme, a

test chip of the ηT pairing accelerator is fabricated in 90-nm

1P9M CMOS process. Due to the limitation of chip size and

for the comparison purpose, the field F(397) is selected. The

chip micrograph is shown in Fig4. In this section, we

describe the measurement results, summarize the

A. Measurement Results

The measurement result of the test chip under different

supply voltages is shown in Fig. 5(a). The results shows that

the accelerator draws 103 mW under 1.3 V supply voltage

while running at 185 MHz. Since the clock cycle is 17 × (97

+ 1)/2 for the Miller’s loop, the throughput is thus about

222K bilinear pairings per second. When supply voltage is

scaled down to 0.7 V, the power is reduced to 35.1 mW with

a better energy efficiency. The Shmoo plot is shown in Fig.

5(b). Table V summarizes key features of the proposed

pairing accelerator over F(397) test chip under 1.0 V supply

voltage.

B. Comparison with other ηT Pairing Accelerator

In considering the scaling effect of fabrication technology

and supply voltage, the normalization factor of area–time

(AT) key characteristics, and compare our application

specified integrated circuit (ASIC) implementation results to

other stateof-the-art designs. product and energy can be

referred to [40] and [41]. The normalization factor for AT

product is proportional to the ratio of minimum gate length

for transistor; the normalization factor for energy is

proportional to the square ratio of minimum gate length for

transistor multiplied by square ratio of supply voltage. To the

best of our knowledge, Beuchat et al. [13] design the first and

the only ASIC implementation of ηT pairing, and their ASIC

implementations embeds nine multipliers, an addition unit,

and a cubing unit. However, the computation cost of their

methodology is higher than ours. Moreover, they do not

employ the pipeline techniques, and the computation time of

the two steps is far from balance. According to Table VI, our

design achieves 178% better in terms of technology AT

product.

(a)

B. NIRANJANI, BEJJENKI SHIVA KUMAR, P. PRASAD RAO

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

(b)

Fig.5. Measurement results. (a) Measured power

consumption under different supply voltages. (b) Shmoo

plot.

Table V: Chip Summary

Table VI: Comparison with other ηT Pairing Accelerator

C. Comparison with Other Ate Pairing Accelerator

The comparison among different pairing accelerator is

especially difficult since the implementation style and design

parameters are distinct from each other. According to NIST

recommendation, 128-bit symmetric security is essential

beyond 2030 [26]. Therefore, various implementations of

pairing accelerator targeting at 128-bit security level are

presented in recent years. A comparison with three state-of-

the-art pairing accelerator designs is given in Table VII. Note

that to make a fair comparison, we use the widely accepted

attack model proposed in [42] and choose the curve

parameters derived in Section II. Such that ηT pairing over

super singular curve with curve parameter E/F3709 and

pairing over ordinary curve with curve parameter E/F256 are

in roughly the same security level. The first ASIC

implementations of pairings with 128 bits of security were

presented in [37] and [38], and [39] describes a more

efficient accelerator by modifying the multiplication scheme.

These three implementations use BN-curves so as to exploit

their optimal embedding degree k = 12 while targeting 128

bits of security, but the arithmetic on these curves are over

prime field, which should deal with carry propagation

carefully. In addition, pairings over BN-curves are

asymmetric pairing, which is not well suited for many

existing protocols. We take advantage of the efficient

arithmetic of ternary field, and further minimize the

complexity by mathematical formulation and exploration of

hardware-efficient multiplier. From the comparison table, we

can observe that our design outperforms other designs in

terms of operation time. Furthermore, the gate counts of our

design are larger than the others due to the fully pipelining

and parallelism techniques, but our design still achieves

better AT product compared with these three designs.

Table VII: Comparison with Other Pairing Accelerator

VI. CONCLUSION

 We have presented an efficient pairing accelerator

supporting ηT pairing computation over characteristic three

that targets high throughput and hardware efficiency. The test

Encryption Methods in Galios Field to Make An Efficient Area and Delay Cryptographic Processor

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

chip with 1.47-mm2 core area is fabricated in 90-cm CMOS

1P9M technology. It achieves one bilinear pairing

computation over F(397) in 4.76 μs at 175 MHz. Moreover,

the 126-bit security level version of our design can perform a

bilinear pairing computation over F(3709) in 36.2 μs at 166

MHz. The performance comparison shows that our

architecture proposal outperforms other related pairing

designs in both operation time and hardware efficiency.

These benefits demonstrate that our proposal solution is well

suitable for high-speed pairing-based protocols in cloud

services and applications.

VII. REFERENCES

[1] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels,

Advances in Elliptic Curve Cryptography (London

Mathematical Society Lecture Note Series). New York, NY,

USA: Cambridge Univ. Press, 2005.

[2] D. Boneh and M. K. Franklin, ―Identity-based encryption

from the weil pairing,‖ in Proc. 21st Annu. Int. Cryptol.

Conf. Adv. Cryptol., Aug. 2001, pp. 213–229.

[3] A. Sahai and B. Waters, ―Fuzzy identity based

encryption,‖ in IACR, New York, NY, USA: Springer-

Verlag, 2004.

[4] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G.

Persiano, ―Public key encryption with keyword search,‖ in

Proc. EUROCRYPT, 2004, pp. 506–522.

[5] (2014). CertiVox [Online]. Available: https://certiv

ox.com/.

[6] IEEE P1363.3 Draft Standard for Identity-Based Public-

Key Cryptography Using Pairing, IEEE Standard P1363.3,

Apr. 2006.

[7] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott,

―Efficient algorithms for pairing-based cryptosystems,‖ in

Proc. 22nd Annu. Int. Cryptol. Conf. Adv. Cryptol., 2002, pp.

354–368.

[8] S. D. Galbraith, K. Harrison, and D. Soldera,

―Implementing the Tate pairing,‖ in Proc. 5th Int. Symp.

Algorithmic Number Theory, 2002, pp. 324–337.

[9] P. S. L. M. Barreto, S. D. Galbraith, C. Ó’hÉigeartaigh,

and M. Scott, ―Efficient pairing computation on

supersingular Abelian varieties,‖ Des., Codes Cryptogr., vol.

42, no. 3, pp. 239–271, 2007.

[10] F. Hess, N. Smart, and F. Vercauteren, ―The Eta pairing

revisited,‖ IEEE Trans. Inf. Theory, vol. 52, no. 10, pp.

4595–4602, Oct. 2006.

[11] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M.

Shirase, and T. Takagi, ―Algorithms and arithmetic operators

for computing the ηT pairing in characteristic three,‖ IEEE

Trans. Comput., vol. 57, no. 11, pp. 1454–1468, Nov. 2008.

[12] R. Ronan, C. O’Eigeartaigh, C. Murphy, T. Kerins, and

P. S. L. M. Barreto, ―Hardware implementation of the ηT

pairing in characteristic 3,‖ IACR Cryptol. ePrint Archive,

2006, p. 371.

[13] J.-L. Beuchat, H. Doi, K. Fujita, A. Inomata, P. Ith, and

A. Kanaoka, ―FPGA and ASIC implementations of the etat

pairing in characteristic three,‖ Comput. Electr. Eng., vol. 36,

no. 1, pp. 73–87, 2010.

[14] N. Shinohara, T. Shimoyama, T. Hayashi, and T.

Takagi, ―Key length estimation of pairing-based

cryptosystems using ηt pairing,‖ in Proc. 8th Int. Conf. Inf.

Security Pract. Exper., 2012, pp. 228–244.

[15] V. S. Miller, ―Short programs for functions on curves,‖

Ph.D. dissertation, Exploratory Comput. Sci., IBM Thomas

J.Watson Research Center, Yorktown Heights, NY, USA,

1986.

[16] M. Scott, Implementing Cryptographic Pairings (Lecture

Notes in Computer Science). Berlin, Germany: Springer-

Verlag, 2007, pp. 177–196.

[17]O.Ahmadi and F.Rodriguez-Henriquez,―Low complexity

cubing and cube root computation over F3m in polynomial

basis,‖ IEEE Trans. Comput., vol. 59, no. 10, pp. 1297–1308,

Oct. 2010.

[18] (2012). PARI/GP, version 2.5.2, The PARI Group,

Bordeaux, France [Online]. Available: http://pari.math.u-

bordeaux.fr/.

[19] K. Harrison, D. Page, and N. P. Smart, ―Software

implementation of finite fields of characteristic three, for use

in pairing based cryptosystems,‖ LMS J. Comput. Math., vol.

5, pp. 181–193, Nov. 2002.

[20] Y. Kawahara, K. Aoki, and T. Takagi, ―Faster

implementation of ηT pairing over GF(3m) using minimum

number of logical instructions for GF(3)-addition,‖ in

Pairing-Based Cryptography (Lecture Notes in Computer

Science). Berlin, Germany: Springer-Verlag, 2008, pp. 282–

296.

[21] L. Song and K. K. Parhi, ―Low-energy digit-

serial/parallel finite field multipliers,‖ J. VLSI Signal

Process. Syst. Signal, Image Video Technol., vol. 19, no. 2,

pp. 149–166, Jul. 1998.

[22] T. Itoh and S. Tsujii, ―A fast algorithm for computing

multiplicative inverses in GF(2m) using normal bases,‖ Inf.

Comput., vol. 78, no. 3, pp. 171–177, Sep. 1988.

[23] J. M. Pollard, ―English Monte Carlo methods for index

computation (mod p),‖ English Math. Comput., vol. 32, no.

143, pp. 918–924, Jul. 1978.

[24] L. M. Adleman and M.-D. A. Huang, ―Function field

sieve method for discrete logarithms over finite fields,‖ Inf.

Comput., vol. 151, nos. 1–2, pp. 5–16, 1999.

[25] J.-L. Beuchat, E. López-Trejo, L. Martínez-Ramos, S.

Mitsunari, and F. Rodríguez-Henríquez, ―Multi-core

implementation of the Tate pairing over supersingular elliptic

curves,‖ in Proc. 8th Int. Conf. Cryptol. Netw. Security,

2009, pp. 413–432.

[26] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid,

―Recommendation for key management—Part 1: General

(revised),‖ NIST, Boulder, CO, USA, Tech. Rep. SP800-57,

Mar. 2007.

[27] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi,

―Parallel hardware architectures for the cryptographic Tate

pairing,‖ in Proc. 3rd Int. Conf. Inf. Technol., New Generat.,

Apr. 2006, pp. 186–191.

[28] E. Gorla, C. Puttmann, and J. Shokrollahi, ―Explicit

formulas for efficient multiplication in F36m ,‖ in Proc. 14th

Int. Conf. Sel. Areas Cryptography, 2007, pp. 173–183.

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

B. NIRANJANI, BEJJENKI SHIVA KUMAR, P. PRASAD RAO

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498

[29] J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and

E. Okamoto, ―A coprocessor for the final exponentiation of

the ηt pairing in characteristic three,‖ in Proc. 1st Int.

Workshop Arithmetic Finite Fields, 2007, pp. 25–39.

[30] R. Granger, D. Page, and M. Stam, ―On small

characteristic algebraic tori in pairing-based cryptography,‖

LMS J. Comput. Math., vol. 9, pp. 64–85, Mar. 2004.

[31] A. Karatsuba and Y. Ofman, ―Multiplication of

multidigit numbers on automata,‖ Soviet Phys. Doklady, vol.

7, pp. 595–596, Jan. 1963.

[32] (2013). MIRACL SDK, Version 5.5 CertiVox [Online].

Available: http://www.certivox.com/miracl/

[33] S.-C. Chung, J.-W. Lee, H.-C. Chang, and C.-Y. Lee, ―A

high performance elliptic curve cryptographic processor over

GF(p) with SPA resistance,‖ in Proc. IEEE Int. Symp.

Circuits Syst., May 2012, pp. 1456–1459.

[34] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee,

―Processor with side-channel attack resistance,‖ in Proc.

IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb.

2013, pp. 50–51.

[35] J.-Y. Lai and C.-T. Huang, ―Elixir: High-throughput

cost-effective dualfield processors and the design framework

for elliptic curve cryptography,‖ IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no. 11, pp. 1567–1580,

Nov. 2008.

[36] C. Rebeiro and D. Mukhopadhyay, ―High speed

compact elliptic curve cryptoprocessor for fpga platforms,‖

in Proc. 9th Int. Conf. Cryptol. India, Progr. Cryptol., 2008,

pp. 376–388.

[37] J. Fan, F. Vercauteren, and I. Verbauwhede, ―Faster

arithmetic for cryptographic pairings on barreto-naehrig

curves,‖ in Proc. 11th Int. Workshop Cryptograph. Hardw.

Embedded Syst., 2009, pp. 240–253.

[38] D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter,

M. Langenberg, D. Auras, et al., ―Designing an ASIP for

cryptographic pairings over barreto-naehrig curves,‖ in Proc.

11th Int. Workshop Cryptograph. Hardw. Embedded Syst.,

2009, pp. 254–271.

[39] Y. Li, J. Han, S. Wang, D. Fang, and X. Zeng, ―An

800Mhz cryptographic pairing processor in 65nm CMOS,‖ in

Proc. IEEE A-SSCC, Nov. 2012, pp. 217–220.

[40] H.-Y. Hsu, A.-Y. Wu, and J.-C. Yeo, ―Area-efficient

VLSI design of Reed–Solomon decoder for 10GBase-LX4

optical communication systems,‖ IEEE Trans. Circuits Syst.

II, Exp. Briefs, vol. 53, no. 11, pp. 1245–1249, Nov. 2006.

[41] C.-C. Wong and H.-C. Chang, ―High-efficiency

processing schedule for parallel turbo decoders using QPP

interleaver,‖ IEEE Trans. Circuits Syst. I, Reg. Papers, vol.

58, no. 6, pp. 1412–1420, Jun. 2011.

[42] A. K. Lenstra, ―Unbelievable security. Matching AES

security using public key systems,‖ in ASIACRYPT, C.

Boyd, Ed. New York, NY, USA: Springer-Verlag, 2001, pp.

67–86.

Author’s Profile:

B. Niranjani, PG Scholar, Dept of ECE,

Vagdevi College of Engineering,

Bollikunta, Warangal, Telangana, India,

Email:niranjanibollam@gmail.com.

Bejjenki Shiva Kumar, Assoc Prof,

Dept of ECE, Vagdevi College of

Engineering, Bollikunta, Warangal,

Telangana, India,

Email: shivakumar.bejjenki@gmail.com.

P. Prasad Rao, HOD, Dept of ECE, Vagdevi College of

Engineering, Bollikunta, Warangal, Telangana, India,

Email: Prasad rao_hod@yahooo.co.in.

