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Abstract: To support emerging pairing-based protocols related to cloud computing, an efficient algorithm/hardware code sign 

methodology of ηT pairing over characteristic three is presented. By mathematical manipulation and hardware scheduling, a 

single Miller’s loop can be executed within 17 clock cycles. Furthermore, we employ torus representation and exploit the 

Frobenius map to lower the computation cost of final exponentiation. Pipelining and parallelization datapath are also exploited to 

shorten the critical path delay. Finally, by choosing suitable multiplier architecture and selecting an appropriate number of 

multipliers, Miller’s loop and final exponentiation can be computed in a fully pipelined manner. With these schemes, a test chip 

for the proposed pairing accelerator has been fabricated in 90-nm CMOS 1P9M technology with a core area of 1.52 × 0.97 mm2. 

It performs a bilinear pairing computation over F(397) in 4.76 μs under 1.0 V supply and achieves 178% improvement to relative 

works in terms of area–time (AT) product. To support higher level of security, a 126-bit secure pairing accelerator that can 

complete a bilinear pairing computation over F(3709) in 36.2 μs is implemented and this result is at least 31% better than relative 

works in terms of AT product. 

 

Keywords: Application-Specific Integrated Circuit (ASIC) Implementation, Elliptic Curve, Ηt Pairing. 

 

I. INTRODUCTION 

  In 2000, Mitsunari etal., Sakai etal., and Joux independently 

discovered constructive properties of bilinear pairing [1]. 

One year later, Boneh and Franklin [2] solved a long lasting 

problem of identity-based cryptography based on bilinear 

pairing. Since then, an ever increasing number of protocols 

based on the bilinear pairing have appeared in the literature. 

In recent years, cloud computing becomes a promising 

alternative to traditional local services. However, security 

and privacy issues may prevent wide acceptance in practice 

since the data no longer store on personal devices. To provide 

privacy and enhance security for users, myriad of 

cryptography protocols based on bilinear pairing have been 

presented to resolve this problem, such as [3] and [4]. 

Specifically, Sahai and Waters [3] introduced a protocol 

realizing the confidentiality and fine-grained access control 

of data based on the attribute-based encryption. On the other 

hand, Boneh et al. [4] facilitate the data owner efficiently 

search the files stored by cloud servers while prevents cloud 

servers from learning both the data file contents and user 

query information. Furthermore, the properties of bilinear 

pairing allows ID-based authentication, ID-based encryption, 

and hence certificate less key management becomes practical 

[5]. In 2008, IEEE established the draft standard for pairing-

based cryptography [6]. Such protocols rely critically on 

efficient algorithms and implementations of pairing 

primitives. According to [1], when dealing with general 

curves providing common levels of security, the Tate pairing 

is more efficiently computable than the Weil pairing. 

Significant improvements were independently proposed in 

[7] and [8].  

 Barreto et al.[9] and Hess et al[10] introduced the ηT pairing 

and Ate pairing, respectively, which further shortens the loop 

of Miller’s algorithm. We choose ηT pairing in this paper 

since it is symmetric pairing, which can support more 

protocols. Moreover, the ηT pairing is defined on super 

singular curve, which can achieve substantially computation 

reduction by choosing suitable distortion map and using 

ternary field arithmetic. The ηT pairing contains two major 

steps [1]: 1) Miller’s loop and 2) final exponentiation. To 

enhance throughput, the hardware of Miller’s loop and final 

exponentiation can work independently, as the former data 

are completed with the computation of Miller’s algorithm 

and follows by the final exponentiation, the latter data can be 

activated to start the computation of Miller’s algorithm 

simultaneously. In [11]–[13], however, the computation time 

of Miller’s algorithm and final exponentiation are far from 

balanced, which is hard to employ fully pipeline techniques 

to enhance throughput. In this paper, a new ηT pairing 
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accelerator for high-speed pairing-based protocols is 

proposed. To reduce the execution cycles of Miller’s loop, 

algorithm selection and hardware scheduling are exploited 

and analyzed. Moreover, the torus representation and 

mathematical manipulation are used to shorten the final 

exponentiation time. In addition, the number and architecture 

of multipliers are selected and scheduled so that these two 

major steps can be computed in a fully pipelined manner. The 

major contributions of this paper are highlighted here. 

1. Considering the recent attack proposed in [14], we 

suggest using larger field to achieve 126-bit security 

level. To mitigate the corresponding increase of 

computation overhead, we carefully choose algorithm 

parameters including reduction polynomial, field 

element encoding method, paring algorithm, and so on. 

2.  This paper reducing the computation cost of both 

Miller’s loop and final exponentiation by applying 

several state-of-the art optimization. 

3. By designing suitable multiplier architecture and 

employing pipelining and parallelization, the 

implementation result outperforms relative works in 

terms of speed and hardware efficiency. 

 

The rest of this paper is organized as follows. The 

algorithm of ηT pairing as well as its parameter selections are 

presented in SectionII. The improved pairing arithmetic 

including Miller’s loop and final exponentiation are proposed 

and analyzed in Section III. Moreover, Section IV reports the 

hardware architecture of our proposed pairing accelerator as 

well. The measurement results of a 90-nm test chip and 126-

bit security level accelerator as well as the comparisons 

against relative works are given in Section V. Finally, 

Section VI concludes this paper. 

II. BACKGROUND 

A. Symmetric Pairings 

In most of the protocols, symmetric pairing is often 

selected as it allows simpler and briefer mathematical 

statements and definitions. Let G1 be an abelian group with 

additive identity element O and r is a positive integer. 

Suppose G1 has order r , which means [r ]P = O for all P ∈ 

G1. Suppose G2 is a cyclic group of the same order r with 

multiplicative identity element one. A symmetric pairing is a 

map e: G1×G1→ G2. Note e should be feasibly computable, 

bilinear in both group, and non degenerate, which enables the 

construction of novel and efficient cryptography protocols. 

Let n be an integer, then the most crucial function in pairing 

is Miller’s function fn,P, and the divisor of Miller’s function 

is defined as (fn,P)=n(P)−([n]P)−(n−1)(O). Miller’s functions 

are at the root of most pairing proposed for cryptographic 

purpose. We refer the reader to [1] for the mathematical 

details of divisor. To compute the function, one can use 

Miller’s algorithm [15], which shows that a Miller’s function 

satisfies the following observation up to a nonzero factor in 

Fq: fm+n,P=fm,P·fn,P·l[n]P,[m]P/v[n+m]P where l[n]P,[m]P 

denotes the line through [n]P and [m]P, and v[n+m]P is the 

vertical line through [n + m]P. These two functions are so 

called line function in the literature. An efficient algorithm 

can be derived from the above formula, since with this 

relation, the line function and hence Miller functions can be 

computed using usual chord-and tangent method on elliptic 

curve. 

Algorithm 1 Miller’s Loop without Cube Roots of ηT 

Pairing 

 
 

B. ηT Pairing 

     Let r be the largest prime factor of N, so that r 2 is not a 

factor of N, where N is the order of the curve. Then, we can 

write N=i·r, where i is a small positive integer. The ηT 

pairing is a symmetric pairing that maps two points inr -

torsion groups into an element of the group of r th roots of 

unity μr E(F3m)[r]×E(F3m)[r]→μr⊂ F
*

3km. The embedding 

degree or security multiplier is the least positive integer k for 

which μr is contained in the multiplicative group F
*
3km. The 

curve used in this paper has k = 6, which is the maximum 

value possible for super singular elliptic curves. Moreover, 

let P, Q ∈ E(F3m )[r ] and T = 3m − N, construct the divisor D 

= (Q) − (O), and ( fr, P) = r (P) −r (O). Such that supports of 

D and ( fr,P ) are disjoint, then ηT pairing function ηT (P, Q) is 

defined by
1 

                                        (1) 

Algorithm 2 Final Exponentiation of ηT Pairing 
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  The above formula contains cube root operations. However, 

cube root is substantially slower than calculations of cube in 

hardware, thus we adopt a cube-free implementation of ηT 

pairing, as shown in Algorithm 1 [11]. The result of ηT 

pairing is mapped to a coset. To ensure unique output value 

of ηT pairing, we have to raise it up to Mth power, where M = 

(3
6m

−1)/N. This additional step is known as final 

exponentiation. As suggested by[16], the final exponentiation 

can be further factored to (3
3m

−1) (3
m
+1)(3

m
+1±3

(m+1)/2
), 

which can lower the computation cost. To compute the final 

exponentiation, [6] suggested to used composite field 

representation ηT = F = f0 + f1σ + f2ρ + f3σρ + f4ρ
2
 +r5σρ

2
, 

and the details are illustrated in Algorithm 2. 

C. Parameter Selection 

Let E be a super singular elliptic curve defined by E : y
2
 = 

x
3
 − x + b, with b ∈ {−1, 1}. The order of curve is given as N 

= 3
m
 + 1 + μb3

(m+1)/2
, with 

                                              (2) 

     As suggested by [17], one can choose a reduction 

polynomial as a trinomial of the form P(x) = x
m
−x

n
+1 so that 

the computation of cubing can be achieved by several 

additions. Furthermore, the exponent n should be small, so 

that the cubing cost can be further reduced. Because of 

PARI/GP [18], we can obtain optimal trinomials in this 

paper. Galbraith et al. [8] showed how to compute additions 

of two elements a, b ∈ F3 using 12 AND, OR, XOR, and 

NOT Boolean functions. Harrison et al. [19] noted that this 

operation could be computed using only seven OR and XOR 

logic operations. This was considered the minimal number of 

logical operations for this arithmetic operation until 

Kawahara et al. [20] presented an expression that only 

requires six logical instructions. However, the benefits of this 

construction are that the multiplication over F3 is pre 

computed or it would require pre/post processing between 

addition and multiplication, which is not suitable for high-

speed applications. Therefore, we choose the encoding 

method proposed by Harrison. 

 

Using Harrison’s encoding method, an element a ∈ F3 can 

be written by two bits like a = (ah, al ) for ah, al ∈ {0, 1}, ah = 

a/2, al = a mod 2. Specifically, the symbols (0, 0), (0, 1), (1, 

0) mean 0, 1, 2, respectively. Elements of the field F3m are 

represented as polynomial basis. The field F3m can be 

regarded as F3[x]/f (x), where the f (x) is a degree-m 

irreducible trinomial. The multiplication c = a · b in F3 can 

be written as: cl = (ah ∧bh)∨(al ∧bl) and ch = (ah ∧bl)∨ = (al 

∧bh). For m-bit long F3 multiplication, we use serial–parallel 

scheme to explore the tradeoff between time and area. By 

[21], we can implement the multiplication over F3m by 

processing an operand with D words at each clock cycle. 

Therefore, in each step, we compute the degree m+D−2 

partial product polynomials: All the 

partial products are summed up by a degree m + D − 1 

accumulator polynomial: s(x) = t (x)+x D · (s(x) mod f (x)).      

After m/D steps, the output of a(x)b(x) mod f (x) is equal to 

the polynomial s(x). Algorithm3 summarizes this 

multiplication scheme. Cubing over F3m is a simple 

arithmetic operation over the irreducible trinomial. The 

operation number of addition/subtraction of cubing is 

bounded by m + 2/3 · (2k + n) − 3, we refer the reader to [17] 

for the detail of derivation. Instead of designing a specific 

operator based on the extended Euclidean algorithm, we 

suggest to keep the circuit area as small as possible by 

performing inversion according to [22], which is based on 

Fermats little theorem. Since this scheme requires only 

multiplications and cubings over F3m , we do not have to 

include dedicated hardware for inversion in our coprocessor.  

Algorithm 3 Parallel–Serial Multiplication Over F3m 

 
 

The security of the pairing is determined by the difficulty 

of the Discrete Logarithm Problem (DLP) on the input curve 

and on the output multiplicative group. The embedding 

degree k acts as a cursor to adjust the size of the 

multiplicative group F
*

qk with respect to that of Fq . The best 

known algorithm to attack the DLP on the r -torsion is 

Pollard’s ρ method [23] while the functional field sieve (FFS) 

[24] is generally used to attack DLP on μr ⊂ F
*

qk . According 

to [14], the improved FFS can solve the DLP with time 

complexity  The time complexity of the 

improved FFS versus m is plotted in Fig. 1. We can find that 

the previous work, which builds on F3509 [25], is not 

sufficient to provide the 128-bit security level, as suggested 

in [26]. Therefore, we list in Table I for a selection of prime 

extension degrees m that enjoy large r -torsion subgroups. 

For a given extension degree m, we use PARI/GP [18] to find 

its corresponding curve, reduction trinomials, and the 

estimated security level.  

III. PROPOSED ηT PAIRING ARITHMETIC 

In Algorithm 1, the composite field representation is used, 

so that all the operations over F36m can be replaced by 

arithmetic over F3m. In Algorithm 2, instead, we suggest to 

use torus T2(F3
3m

 ) to compress the value of F
*
36m , which can 

further reduced the cost of field operations compared with 

composite field representation. 

 



B. NIRANJANI, BEJJENKI SHIVA KUMAR, P. PRASAD RAO
 

International Journal of VLSI System Design and Communication Systems 

Volume.03, IssueNo.10, December-2015, Pages: 1490-1498 

A. Miller’s Loop 

The most critical part of Algorithm 1 is at line 12, which 

involves multiplication over F36m. Notice that it is a sparse 

(i.e., some of its terms are trivial) multiplication over F36m , 

which allows us to optimize the computation. Bertoni et al. 

[27] and Gorla et al. [28] take advantage of Karatsuba 

multiplication and Lagrange interpolation, respectively, to 

reduce the number of multiplications over F3m at the expense 

of several additions. However, to keep the pipeline of our 

multiplier busy, we have to embed a large multi operand 

adder and irregular data path, which would deteriorate the 

clock frequency. Thus, we do some manipulation on the 

formula to reduce the number of additions while keeping the 

number of multiplications small. We first represent F and G 

using the composite field representation as follows: 

         F = f0 + f1σ + f2ρ + f3σρ + f4ρ
2
 + f5σρ

2
 

         G = g0 + g1σ + g2ρ + g3σρ + g4ρ
2
 + g5σρ

2
.              (3) 

 
Fig.1. Time complexity estimation of solving DLP over 

F(36m). 

Table I: Parameter Selection 

 
   According to line 7 in Algorithm 1, g3 = 0, g4 =−1, and g5 

= 0 here, and we combine lines 12 and 7 in Algorithm 1 so 

that F = FG becomes F = F
3
G. Furthermore, F

3
 can be 

represented as (f03 + f23 + f43) + (− f13 − f33 −f53)σ +( 

f23− f43)ρ+(−f33+f53)σρ+f43ρ2+(− f53)σρ2, we thus obtain  

                          (4) 

     Considering hardware sharing, the formula can be 

rewritten as follows: 

                                (5) 

   Thus, the cost of sparse multiplication is 15 multiplications, 

6 cubings, and 33 additions. Despite of the sparse 

multiplications, there left two field multiplications, two 

additions, and four cubings in Miller’s loop. Thus, the overall 

cost is 17 field multiplication, 10 cubings, and 35 additions 

over F3m in a single Miller’s loop. 

B. Final Exponentiation 

In Algorithm 2, the operations involve power of 3 
3m −1

, 3
m

 

+ 1, and 3
(m+1)/2

 in F
*

36m . We aim at reducing the field 

operation numbers, so that hardware complexity for final 

exponentiation can be alleviated. The following section 

depicts the idea of our implementation, and we take m = 97 

to evaluate the detail cost of each operation to show the 

improvement over relative works. 
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1. Power of 3
3m

−1 in F
*

36m: Granger et al. [30] introduced the 

torus T2(Fq3 ) for compressing value of Fq6, and we used 

this idea to compute the power of 33m − 1 in F36m . Note 

that F
*

36m is a second extension field of F
*

33m, thus every 

element in F
*
36m can be represented as A = A0 + A1σ with 

A0, A1 ∈ F
*

33m . Or more formally, torus T2(F3
m3

 ) = {A0 + 

A1σ ∈ F
*

36m: (A0)2 + (A1)2 = 1}. 

                     (6) 

     To compute the multiplication and squaring in F
*

33m , 

direct implementation will cost ten and six field 

multiplications, respectively. We can use Karatsuba scheme 

[31] to reduce the cost to six and five field multiplications, 

respectively .On the other hand, to calculate the inversion in 

F
*

33m, let B = b0 + b1ρ + b2ρ2 be the multiplicative inverse 

of A =a0 + a1ρ + a2ρ2. Since AB = 1, we obtain the 

following matrix: 

                                  (7) 

where w = (a0 + a1 + a2)
3
 − a0(a0a2 − a1

2
) + a2

2
(a0 − a1), 

which involves seven field multiplications and one field 

inversion. If we construct the squaring from multiplication, 

power of 3
3m

 − 1 in F
*

36m requires 37 field multiplications, 71 

additions, and one field inversions in F3m . 

2. Power of 3m+1 in F
*
36m: For powering 3

m
+1 in F36m, we 

still use the torus concept. We adopt the result in [28], which 

requires nine field multiplications and 18 field additions. 

3. Power of 3(m+1)/2 in F
*36m

: In this section, we take 

advantage of Frobenius, so that the addition number can be 

significantly reduced.  

Let F = f0+ f1σ+ f2ρ+ f3σρ+ f4ρ2+f5σρ2 ∈ F
*

36m . Noting 

that σ3i = (−1)i σ, ρ3i = ρ + ib, and(ρ
2
)3i = ρ2 − ibρ + i 2. We 

obtain the following formula, depending on m: 

                     (8) 

Take m = 97 

                              (9) 

   Thus, to complete the final exponentiation power, we 

requires 79 field multiplications, 390 field cubings, and 180 

field additions for m=97. The comparison of these 

computation costs with other state-of-the-art works are listed 

in TableII. As shown in TableII, since Ronan et al.[12] 

construct element in F36m using composite field 

representation instead of torus representation, their 

computation cost is markedly larger than ours. On the other 

hand, though Beuchat et al.[29] also employ torus 

representation, they do not take advantage of Frobenius and 

some mathematical manipulation, thus their computation cost 

is still higher than ours. 

IV. HARDWARE ARCHITECTURE FOR ηT PAIRING 

ACCELERATOR 

To justify the need of building hardware accelerator in 

system, we first implement the ηT pairing algorithm in 

software in the context of pairing protocols [4] using 

MIRACL SDK [32], where the results are shown in Table III. 

The result shows that when building the pairing protocol, the 

bilinear pairing is the most time critical part. Furthermore, 

the computation time of elliptic curve scalar multiplication 

(ECSM) takes much time as well, thus it may be beneficial to 

compute both bilinear pairing and ECSM using hardware 

accelerator. Our pairing accelerator wrapped with AMBA 

AHB bus can work with the ECSM accelerator in [33]–[35] 

to alleviate the bottleneck of pairing protocols. 

Table II: Comparison among Previous Works in Final 

Exponentiation for m = 97 

 

Table III: Profiling of A Pairing Protocol [4] 

 
   Fig. 2 shows our overall proposed pairing accelerator with 

a standard AMBA AHB interface. For supporting arbitrary 

field length, the pairing arithmetic unit is designed to have 

programmable datapath. The ηT pairing can be calculated 

using pairing arithmetic unit controlled by the main 

controller. The Miller’s algorithm is an iterative algorithm, 

while final exponentiation involves irregular computation. To 

achieve high-speed requirement, we design two independent 

dedicate hardware modules for Miller’s algorithm and final 

exponentiation, respectively. By choosing appropriate 
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multiplier architecture and selecting adequate number of 

multipliers, we pipeline these two steps to enhance 

throughput. 

 
Fig.2. Block diagram of our proposed pairing accelerator. 

 

Table IV: Hardware Scheduling of Miller’s Loop 

 

A. Miller’s Loop Implementation 

Multiplication is the pertinent operation of a bilinear 

pairing computation, as stated in Section III. Variants of 

parallel–serial and Karatsuba multiplier are by far the most 

efficient two used in the context. To study a wide range of 

implementation strategies, we write a Verilog code generator 

for parallel– serial multiplier and modify the Verilog code 

generator in [36], which can produce variants of Karatsuba 

multipliers. The parallel–serial multiplier seems to be more 

attractive because it has smaller area overhead. However, we 

should carefully deal with the scheduling and manage to keep 

the pipeline busy. To enhance throughput while still 

maintaining a competitive critical path delay, we design a 

seven-stage parallel–serial multiplier. The coprocessor shown 

in Fig. 2 embeds this seven stage fully pipelined parallel–

serial multiplier, which is similar to our seven-stage pipelined 

parallel–serial multiplier stated in the following section 

except the hardware is duplicated and control is altered as 

well. There is a four-input adder to support the field addition, 

subtraction, and accumulation in Algorithm1. A standalone 

cubing unit that can complete a cubing operation in one cycle 

is also included. With these arithmetic units, the 17 

multiplications in each iteration of Miller’s loop is scheduled 

at higher priority, and the field additions and field cubings 

are parallel computed with multiplication, as shown in Table 

IV. In Table III, MUL IN1, MUL IN2, and MUL OUT 

denote the two inputs and output of the multiplier, 

respectively, and CUBE indicates the cycle when cubing 

operation is conducted. The OUT is the output of the Miller’s 

loop coprocessor. We aim to keep the pipeline busy, so that 

the data dependency is avoided and the register usage is 

minimized. From the scheduling result, each single Miller’s 

loop can be completed in 17 clock cycles with the proposed 

coprocessor, thus Algorithm 1 can be completed in 17 · (m + 

1)/2 cycles including the initial step. 

 
Fig. 3. Seven-stage pipelined parallel–serial multiplier. 
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B. Final Exponentiation Implementation 

   Note that the critical operations in Algorithm 2 are 

multiplications and long sequences of cubings, which are 

different from the design of Miller’s coprocessor. As a result, 

we propose a new module for arithmetics in final 

exponentiation. The computation cost of final exponentiation 

is smaller than Miller’s loop according to Section III, thus we 

can deploy a slightly more serial architecture to reduce 

hardware cost. Inputs and outputs, as well as intermediate 

results, are stored in a dual-port random access memory since 

the hardware scheduling involves simultaneously read to the 

register file. The coprocessor embeds three seven-stage 

pipelined parallel– serial multipliers, as shown in Fig. 3, to 

match the computation time of Miller’s loop. Note that in 

Algorithm 3 the operation ×x
D
 involves only wiring, and a 

single modulo f (x) reduction is needed in each iteration. As 

previously mentioned, since trinomial is chosen as the 

irreducible polynomial, reduction can be done by performing 

several additions. We also embed a four-input adder and a 

cubing unit to deal with addition, subtraction, and cubing 

operations. This architecture allows us to efficiently 

implement the final exponentiation algorithm, and the cycle 

count compared with previous design is listed in Table II. 

Finally, Miller’s loop and the final exponentiation are 

computed in a pipelined manner in our design, and we can 

learn that the computation time of these two steps are nearly 

equal. Therefore, the throughput of this pairing accelerator 

almost doubles the throughput of non pipelined pairing 

accelerator. 

 

 
Fig.4. Chip micrograph of our proposed pairing 

accelerator. 

 

V. IMPLEMENTATION RESULTS 

 With our proposed pairing arithmetic, hardware scheduling, 

pipelining multiplier architecture, and parallelism scheme, a 

test chip of the ηT pairing accelerator is fabricated in 90-nm 

1P9M CMOS process. Due to the limitation of chip size and 

for the comparison purpose, the field F(397) is selected. The 

chip micrograph is shown in Fig4. In this section, we 

describe the measurement results, summarize the 

A. Measurement Results 

The measurement result of the test chip under different 

supply voltages is shown in Fig. 5(a). The results shows that 

the accelerator draws 103 mW under 1.3 V supply voltage 

while running at 185 MHz. Since the clock cycle is 17 × (97 

+ 1)/2 for the Miller’s loop, the throughput is thus about 

222K bilinear pairings per second. When supply voltage is 

scaled down to 0.7 V, the power is reduced to 35.1 mW with 

a better energy efficiency. The Shmoo plot is shown in Fig. 

5(b). Table V summarizes key features of the proposed 

pairing accelerator over F(397) test chip under 1.0 V supply 

voltage. 

B. Comparison with other ηT Pairing Accelerator 

In considering the scaling effect of fabrication technology 

and supply voltage, the normalization factor of area–time 

(AT) key characteristics, and compare our application 

specified integrated circuit (ASIC) implementation results to 

other stateof-the-art designs. product and energy can be 

referred to [40] and [41]. The normalization factor for AT 

product is proportional to the ratio of minimum gate length 

for transistor; the normalization factor for energy is  

proportional to the square ratio of minimum gate length for 

transistor multiplied by square ratio of supply voltage. To the 

best of our knowledge, Beuchat et al. [13] design the first and 

the only ASIC implementation of ηT pairing, and their ASIC 

implementations embeds nine multipliers, an addition unit, 

and a cubing unit. However, the computation cost of their 

methodology is higher than ours. Moreover, they do not 

employ the pipeline techniques, and the computation time of 

the two steps is far from balance. According to Table VI, our 

design achieves 178% better in terms of technology AT 

product. 

 
(a) 
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(b) 

Fig.5. Measurement results. (a) Measured power 

consumption under different supply voltages. (b) Shmoo 

plot. 

Table V: Chip Summary 

 
 

Table VI: Comparison with other ηT Pairing Accelerator 

 

 

C. Comparison with Other Ate Pairing Accelerator 

The comparison among different pairing accelerator is 

especially difficult since the implementation style and design 

parameters are distinct from each other. According to NIST 

recommendation, 128-bit symmetric security is essential 

beyond 2030 [26]. Therefore, various implementations of 

pairing accelerator targeting at 128-bit security level are 

presented in recent years. A comparison with three state-of-

the-art pairing accelerator designs is given in Table VII. Note 

that to make a fair comparison, we use the widely accepted 

attack model proposed in [42] and choose the curve 

parameters derived in Section II. Such that ηT pairing over 

super singular curve with curve parameter E/F3709 and 

pairing over ordinary curve with curve parameter E/F256 are 

in roughly the same security level. The first ASIC 

implementations of pairings with 128 bits of security were 

presented in [37] and [38], and [39] describes a more 

efficient accelerator by modifying the multiplication scheme. 

These three implementations use BN-curves so as to exploit 

their optimal embedding degree k = 12 while targeting 128 

bits of security, but the arithmetic on these curves are over 

prime field, which should deal with carry propagation 

carefully. In addition, pairings over BN-curves are 

asymmetric pairing, which is not well suited for many 

existing protocols. We take advantage of the efficient 

arithmetic of ternary field, and further minimize the 

complexity by mathematical formulation and exploration of 

hardware-efficient multiplier. From the comparison table, we 

can observe that our design outperforms other designs in 

terms of operation time. Furthermore, the gate counts of our 

design are larger than the others due to the fully pipelining 

and parallelism techniques, but our design still achieves 

better AT product compared with these three designs. 

Table VII: Comparison with Other Pairing Accelerator 

 

 

VI. CONCLUSION 

   We have presented an efficient pairing accelerator 

supporting ηT pairing computation over characteristic three 

that targets high throughput and hardware efficiency. The test 
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chip with 1.47-mm2 core area is fabricated in 90-cm CMOS 

1P9M technology. It achieves one bilinear pairing 

computation over F(397) in 4.76 μs at 175 MHz. Moreover, 

the 126-bit security level version of our design can perform a 

bilinear pairing computation over F(3709) in 36.2 μs at 166 

MHz. The performance comparison shows that our 

architecture proposal outperforms other related pairing 

designs in both operation time and hardware efficiency. 

These benefits demonstrate that our proposal solution is well 

suitable for high-speed pairing-based protocols in cloud 

services and applications. 
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